Home » Posts tagged 'Samsung'

Tag Archives: Samsung

Smartphone market outlook and the MediaTek Helio X10 based Xiaomi Redmi Note 2/Prime launched for $125, $140 and $156

Let’s start with an extremely good presentation video by Mrwhosetheboss:

And an actual experience video from Chinese sources (finished by comparing to iPhone 6):

Aug 16, 2015, Xiaomi Today: Xiaomi sold 800,000 Redmi Note 2 phones in 12 hours

Note that Xiaomi has already been the top Chinese company tracked here:
Dec 12, 2012UPDATE Aug’13: Xiaomi $130 Hongmi superphone END MediaTek MT6589 quad-core Cortex-A7 SoC with HSPA+ and TD-SCDMA is available for Android smartphones and tablets of Q1 delivery
Aug 1, 2013Xiaomi, OPPO and Meizu–top Chinese brands of smartphone innovation
Aug 30, 2013Assesment of the Xiaomi phenomenon before the global storm is starting on Sept 5
Sept 5, 2013Xiaomi announcements: from Mi3 to Xiaomi TV
June 12, 2014Xiaomi’s global offensive with Hugo Barra in charge is threatening Apple—with 10.4 million smartphones sold in China it had already outsold Apple in Q1’14, having “just” 9 million iPhones sold there from which we must at least understand the market situation in China upto  Q1 2014 as the reference for the Xiaomi’s progress presented here:

With the Q3 2015 Redmi Note 2/Prime advancement Xiaomi will kill the much hoped (by some stock market analysts) incremental opportunities for the $199 Apple iPhone 6 and $299 iPhone 6 Plus in China and throughout the world. And recall that those were announced 11 months ago as “The Biggest Advancements in iPhone History

China smartphone market Q2 2015 by IHS Technology -- 23-July-2015

This report is similar to later Canalys findings: Xiaomi 15.9%, Huawei 15.7%, and Apple #3. But for the rest: #4 Samsung, #5 vivo. Globally Xiaomi became the #2 Chinese smartphone brand in Q2 2015 according to TrendForce with 5.9% market share, the #1 Huawei having 7.6%, but first time surpassing Lenovo, as well as continuing to distance itself from TCL (Alcatel) and OPPO. Similar to data from Counterpoint Research. See Chinese OEMs Rule. Considering Huawei’s aggressive push since 2011, when Xiaomi devices started in China, Xiaomi’s global achievement is a very remarkable feat.  

Why? Because being in the smartphone device business for just 4 years Xiaomi has already been on or around the top in China for the last 12 months, as well as has launched an impressive global march.

That global sales campaign has been going on in Asia, Russia and Turkey so far, but it is now expanding to Latin America with new model launching in Brazil [CCTV America YouTube channel, July 14, 2015]: “The world’s third largest smartphone maker is taking a different approach in its plans for global domination. Instead of looking to expand in the obvious markets like the U.S. and Europe, Xiaomi is looking to South America. CCTV’s Paulo Cabral filed this report from Sao Paulo.”

And it is not difficult to foresee a huge global success for the company as in India Xiaomi became “the 5th biggest seller of phones in the country, a feat accomplished in only 8 months“: Smartphone company Xiaomi expanding to India and beyond [CCTV America YouTube channel, March 20, 2015]
And now 
China’s Xiaomi Begins Making Smartphones in India [Voice of America, Aug 14, 2015]: “Xiaomi’s Redmi2 Prime smartphone [NOT the Note 2 one], priced at about $110, began rolling out from a factory in Sri City in southern Andhra Pradesh state this week. … entered the Indian market just a year ago, but since then price conscious consumers have snapped up 3 million phones.

Also this all happened after “The Chinese smartphone maker, Xiaomi, held a second flash sale of its new 4.7″ Redmi 1S [at $110/699 RMB almost of the same price level as this year’s $125/799 RMB Redmi Note 2on Tuesday [Sept 9, 2014], after selling out in just four seconds a week ago.“: Chinese smartphone Xiaomi competes with Apple [CCTV America YouTube channel, Sept 9, 2014]

from which I will include the following Q2 CY2014 market share slide for China here:
Xiaomi - Q2 CY2014 smartphone market share for China by Canalys -- 9-Sept-2014
as this position of being “on the top or around it” has been kept by Xiaomi ever since. 

Then we should not forget what only 8 months ago was introduced as Xiaomi launches MiNote, a new iPhone competitor [CCTV America YouTube channel, Jan 15, 2015]: “The tech world is abuzz about Chinese tech company Xiaomi’s bid to compete with Apple and Samsung. Xiaomi CEO Lei Jun unveiled the MiNote and MiNote Pro [at $313/1999 RMB and $391/2499 RMB a kind of twice as expensive predecessors to the new Redmi Note 2/Prime] on Thursday, both are cheaper than similar iPhone models. CCTV’s Xia Cheng reported this story from Beijing.

Finally we should look at the new specification comparisons by GSMinsider: Xiaomi - Redmi Note 2 vs iPhone 6 vs iPhone 6 Plus – Specs Comparison -- 14-Aug-2015

With that Xiaomi will kill Samsung high-end opportunities as well.

Let’s look first at the quite drastic decline of the Samsung smartphone business for the last year and a half (data from Strategy Analytics as it’s been represented in the Apple and Huawei move on Samsung article of July 30, 2015 from Telecom.com, with the vendor rankings in the table according to the latest quarter, i.e. Q2 2015): Strategy Analytics - Global Smartphone Share -- Q1 2014 - Q2 2015
Note that Coolpad (Yulong) and ZTE are also globally represented Chinese brands, not mentioned so far in this article.

Which unit-wise looks like as follows (in millions):Strategy Analytics - Global Smartphone Shipments -- Q1 2014 - Q2 2015

Then I can again refer to Samsung-related high-end specification comparisons produced by GSMinsider: Xiaomi - Redmi Note 2 vs Samsung Galaxy Note 4 vs Samsung Galaxy S5 – Specs Comparison -- 14-Aug-2015
And don’t be fooled with the Qualcomm Snadragon 805 and 801 SoCs used by Samsung in these 2014 vintage devices as Samsung itself abandoned Qualcomm as an SoC supplier for its 2015 devices:Xiaomi - Redmi Note 2 vs Samsung Galaxy S6 vs Samsung Galaxy S6 Edge – Specs Comparison -- 14-Aug-2015

CINNO Research - Q1 2015 China Smartphone Rear Camera Pixel Share -- 12-April-2015Note: Such Samsung move of abandoning the Qualcomm Snadragon 805 and 801 SoCs in its latest high-end products is not an accident but a hard-pressed necessity. The octa-core Qualcomm Snadragon 810 replacing the 805/801 had serious thermal throttling problems, and the Chinese brands were starting to use other octa-cores, among them the quite competitive MediaTek Helio X10. See the following Q1 2015 technology landscape presentation composed of the graphical views from the April 12 and April 24 reports by CINNO Research (in addition to the camera related view on the right):CINNO Research - Q1 2015 China Smartphone Display and CPU Technologies -- 12-24-April-2015

And software-wise Xaomi is already 5 years in the smartphone business with a lot of quite enthusiastic supporters for its Android based Mi User Interface throughout the world. The MIUI 5th Anniversary: Greetings From MIUI Fans From All Over The World testimonial video from the MIUI ROM YouTube channel dated August 12, 2015 is stating that: “MIUI is one of the most popular Android ROMs in the world. It is based on Android, featuring a rich user experience and user customizable themes. MIUI is updated every Friday based on feedback from its users. Now with over 100 million users and 34 MIUI fan sites worldwide, MIUI is the choice of many Android users globally.

What kind of “much hoped incremental opportunities (by some stock market analysts) for Apple” I was talking about?

From India Will Overtake US to Become World’s Second Largest Smartphone Market by 2017 [July 1, 2015] by Strategy Analytics the following chart has been produced for Dazeinfo’s Global Smartphone Sales 2015 – 2017: India Will Surpass The US [July 1, 2015] report: Strategy Analytics - Dazinfo - Global Smartphone Sales Forecast 2015 - 2017 -- 1-July-2015That chart has been used by  in his Why Apple’s Growth-Related Fears Are Overblown [Aug 12, 2015] article on Seeking Alpha for its final argument that:

the market sees China as imperative to Apple’s future growth outlook and while true at the moment, there’s a catalyst forming that should lessen the company’s reliance on China and lead to many millions of new iPhone sales.

China is not that “forming catalyst” that I mentioned earlier. Instead, Apple has a prime opportunity to grow in India over the next year or two, a market that’s growing rapidly with middle class consumers and is the world’s second largest economy by population behind only China.


… with India’s help, which includes the growth in middle class consumers through 2020, India might very well one day become just as important as China to Apple.

Before coming to such final argument Nichols is talking about the current market situation in China via a chart from Above Avalon’s China Mobile Is a Game Changer for Apple [April 29, 2015] research note and with the following comments around that:

Above Avalon - Total Customers for Largest Chinese and U.S. Mobile Carriers -- 28-April-2015

I expect Apple to find additional growth in China next year, regardless of what has transpired from a macro perspective over the last few months. The reason is simple: Improved network coverage. Fact of the matter is that most Chinese consumers are still using 2G or 3G networks, which are hardly compatible with the iPhone 6. At the end of the first quarter, China Mobile (NYSE:CHL) had 153 million 4G customers, up from 90 million in December of 2014 and just 1.3 million in February of 2014. However, China Mobile had 815 million total customers. So that means the majority of its subscribers are still on 2G or 3G networks. Given the rate at which China Mobile has added 4G customers during the last 16 months, investors can rest assured that its network and 4G customers will be far larger by this time next year. Notably, most of those 4G customers will need smartphones, and Apple has quickly become the most popular choice in China.

As for China’s second and third largest wireless carriers, China Unicom (NYSE:CHU) and China Telecom (NYSE:CHA), they have nearly 500 million customers collectively. And believe it or not, China Unicom and China Telecom’s 4G network is even more underdeveloped than China Mobile’s network. However, both China Unicom and China Telecom are working just as fast to build their respective 4G networks. Once more, this increases Apple’s market opportunity in China, and is the key reason why I think Apple’s growth in China will continue through next year, probably at a very high double-digit rate.

So these are the speculations which IMHO do not take into account the new product waves from major Apple and Samsung competitors, especially Xiaomi.

Xiaomi’s new 5.5″  Redmi Note 2 launched in China just this week for $125/799 RMB (16GB version supporting TDD-LTE for a China specific 4G version of LTE as well as TD-SCDMA, the China specific 3.5G — targeted at China Mobile subscribers) and $140/899 RMB (16GB version supporting both TDD-LTE and FDD-LTE, i.e. both 4G versions — for the subscribers of any mobile operators, and especially of China Unicom and China Telecom) is the actual case in this regard. Watch the Xiaomi Redmi Note 2 Prime first look miui 7 pre-order video direct from the launch (the QR code at the start and the end has been positioned out of my embedded view): 

Announced: August 13 2015
Network Technology:
GSM / HSPA / LTE
Expected release:
August 16, 2015
Body Dimensions:
152 x 76 x 8.3 mm
Weight: 160 g
SIM: Dual SIM
Display
Type: IPS LCD capacitive touchscreen, 16M colors
Size: 5.5 inches (~72.2% screen-to-body ratio)
Resolution: 1080 x 1920 pixels (~401 ppi pixel density)
Multitouch: Yes
MIUI 7.0
Platform OS: Android OS, v5.0 (Lollipop)
Chipset: Mediatek MT6795
CPU:
– Octa-core 2.0 GHz Cortex-A53
– Octa-core 2.2 GHz Cortex-A53
GPU: PowerVR G6200
Memory Card slot: No
Internal Memory:
– 16 GB, 2 GB RAM – 2 GHz model
– 32 GB, 2 GB RAM – 2.2 GHz model
Camera:
Primary: 13 MP, 4128 x 3096 pixels, phase detection autofocus, LED flash
Features: Geo-tagging, touch focus, face/smile detection, HDR, panorama
Video: 1080p@30fps
Secondary: 5 MP, 720p
Sound Alert Types:
Vibration; MP3, WAV ringtones
Loudspeaker: Yes
3.5mm jack: Yes
Comms:
WLAN Wi-Fi 802.11 a/b/g/n/ac, dual-band, WiFi Direct, hotspot
Bluetooth: v4.0, A2DP, LE
GPS: Yes,
with A-GPS, GLONASS, Beidou
Infrared port: Yes
Radio: FM radio
USB: microUSB v2.0
Features Sensors:
Accelerometer, gyro, proximity, compass
Messaging:
SMS(threaded view), MMS, Email, Push Mail, IM
Browser: HTML5
Java: No
– Fast battery charging: 60% in 30 min (Quick Charge 2.0)
– Active noise cancellation with dedicated mic
– MP4/H.264 player
– MP3/WAV/eAAC+ player
– Photo/video editor
– Document viewer
Battery: Li-Po 3060 mAh battery
Stand-by: Up to 144 h (3G)
Talk time: Up to 11 h 30 min (3G)
Music play: Up to 46 h
Misc Colors:
White, blue, yellow, pink, mint green

The 2.2 GHz Redmi Note 2 Prime version with 32GB storage and support of  TDD-LTE + FDD-LTE will sell at $156 (999 RMB).

More information:
Aug 13, 2015All About Redmi Note 2/Prime: Specifications, Price, Hands-on Pictures! review by Xiaomi MIUI Official Forum
– Aug 13, 2015Xiaomi New Product Launch: MIUI 7(China), Redmi Note 2(Prime), Mi Wi-Fi nano full launch information (not only the Redmi Note 2/Prime)  by Xiaomi MIUI Official Forum, from which the major Redmi Note 2 and 2 Pro Android competition (Huawei P8 and P8max with Hisilicon Kirin 930 and 935 SoCs, and Meizu MX5 (with the same MediaTek Helio X10 @2.2 GHz) on the Chinese market is described as:
Redmi Note 2 and 2 Pro Android competition on the Chinese market -- 13-Aug-2015
Note: regarding the benchmarked performance of each SoC I will recommend the results made available in the Exynos 7420 vs Snapdragon 810 vs MediaTek Helio X10 Turbo MT6795T vs Hisilicon Kirin 935: Benchmark Scores [July 3, 2015] GSMinsider article
For a much broader competitive comparison I will recommend the Redmi Note 2’s comparisons by GSMinsider  which currently contains comparisons (spec-wise):

vs Asus Zenfone 2 vs Asus Zenfone Zoom
vs HTC One M9 vs HTC One M9+
vs Huawei Honor 7 vs Huawei Honor 6 Plus
vs Huawei Ascend Mate 7 vs Huawei Honor 6 Plus
vs Huawei P8 vs Huawei P8 Max
vs iPhone 6 vs iPhone 6 Plus
vs Lenovo Vibe Shot vs Lenovo Vibe Z2 Pro
vs Lenovo ZUK Z1
vs LG G Flex 2
vs LG G4 vs LG G3
vs Meizu M2 Note vs Meizu M1 Note
vs Meizu MX5 vs Meizu MX4 Pro
vs Motorola Moto X Style vs Moto X Play
vs Nexus 6 vs Motorola Moto Maxx
vs OnePlus 2 vs OnePlus One
vs Oppo Find 7 vs Oppo Find 7A
vs Oppo N3
vs Redmi Note
vs Samsung Galaxy Note 4 vs Samsung Galaxy S5
vs Samsung Galaxy S6 vs Samsung Galaxy S6 Edge
vs Vivo X5 Pro vs Vivo X5 Max
vs Xiaomi Mi Note vs Xiaomi Mi Note Pro
vs Xiaomi Mi4
vs ZTE Axon Pro vs ZTE Axon Lux
vs ZTE Nubia Z9 Max vs Nubia Z9 Mini
vs ZTE Nubia Z9

Aug 13, 2015Additional videos from XiaomiHK YouTube channel:

Xiaomi – MIUI Introduction (with English subtitles)

Xiaomi – MIUI V7 Endurance

i.e. MIU 7 on [Xiaomi’s] Mi 4, Huawei Honor 6, Meizu MX4 and Samsung Galaxy S5

Xiaomi – MIUI V7 Performance

Xiaomi – RedmiNote2″>Xiaomi – RedmiNote2

Xiaomi – RedmiNote2 Camera

Important videos available on the Bloomberg Business website only, with 3 most important videos added to them from the CCTV America YouTube channel:

June 5, 2014: Here’s Why Hugo Barra Left Google to Be Xiaomi VP: Xiaomi Early Investor Robin Chan discusses Xiaomi’s hiring of Google’s Hugo Barra on Bloomberg Television’s “Bloomberg West.” Former Xiaomi Board Member Hans Tung also speaks.

July 17, 2015Xiaomi’s Hugo Barra: Studio 1.0 (Full Show 7/16): This week on Studio 1.0: Emily Chang sits down with Hugo Barra, vice president of global operations at Xiaomi. (Source: Bloomberg) 21 minutes from which I will include here the only slide displayed Xiaomi - Global ambition -- 17-July-2015

Plus a lot of other unique information is available in that interview: like the 2015 vintage business model of Xiaomi (investments into non-platform startups to build business partnerships, a whole ecosystem around Xiaomi etc.).

I will add to that the product shown in the Bloomberg interview as an example of such ecosystem generation. This has been documented in Xiaomi launches $13 fitness band [CCTV America YouTube channel, Aug 18, 2014] as: “Chinese Smartphone maker Xiao-mi has started selling an interactive wristband called the Mi Band. The device can measure one’s heart rate and monitor sleep patterns. It’s not the first such device to hit the market, but so far, it’s the cheapest.

I will also add the Xiaomi Buying Spree Gives Apple, Samsung Reason to Worry [Bloomberg Business YouTube channel, Jan 8, 2015] video stating that: “Xiaomi zoomed past Apple Inc. and Samsung in China smartphone sales just three years after releasing its first model. Founder Lei Jun is now on a buying spree to take that momentum beyond handsets. Bloomberg’s Edmond Lococo has more on “On The Move Asia.” (Source: Bloomberg)

Then remember the already known facts mentioned in the second video on the Bloomberg website like: “Xiaomi is not Apple“, “Xiami is an Internet company” (“an Internet platform and services brand” heard in another interview), “services are inherent part of Xiaomi“, “Xiaomi is one of the biggest e-commerce sites in China“, “the Xiaomi platform products are enhanced in functionality on requests from its users by around 50%” etc.

As the latest proof-point of such an Internet platform and service strategy of the company watch the Chinese mobile co. Xiaomi launches wallet app [CCTV America YouTube channel, March 26, 2015] video:

Other videos from Bloomberg Business YouTube channel:

Jan 15, 2015Xiaomi’s Rapid Rise to $45B Valuation Topping Uber: Xiaomi is Apple and Samsung’s rapidly growing threat. Now the world’s third-largest smartphone maker, Xiaomi is releasing its next phone on Thursday at an event in Beijing. Bloomberg’s Cory Johnson looks at how just fast this company is growing. (Source: Bloomberg)

June 5, 2014Meet the Billionaire ‘Steve Jobs of China’ Lei Jun:  Xiaomi co-founder and chief executive officer Lei Jun is known as the Steve Jobs of China, complete with a wardrobe of black shirts and a cult following. But what did he do before starting Xiaomi, and how has his personality helped drive Xiaomi’s success? Bloomberg West’s Emily Chang gives us an overview of this rock star CEO.

Jan 5, 2015Xiaomi Doubles Revenue to $12B as Phone Sales TripleXiaomi, whose investors include billionaire Yuri Milner, more than doubled its revenue in 2014, according to a blog posting by CEO Lei Jun.

Feb 13, 2015Xiaomi’s Barra: U.S. Market Is Important in Many Ways:  Xiaomi’s Hugo Barra discusses the company’s global expansion plans with Bloomberg’s Brad Stone on “Bloomberg West.”

June 4, 2015Xiaomi Grows Wearable Device Market ShareXiaomi is looking to elbow its way into the wearable device market. New figures suggest it took a quarter slice of global sales the first three months of the year. Bloomberg Intelligence’s Jitendra Waral discusses the sales figures on “Trending Business.”

Other videos from the CCTV America YouTube channel:

July 22, 2014Hugo Barra on latest Xiaomi products: Chinese tech firm Xiaomi showed off some of its latest products on Tuesday. The Beijing-based company unveiled its new Mi smartphone and billed it as a challenger to Apple’s iPhone. Analysts say the Mi 4 will be a make or break product for Xiaomi after sales of the older model proved disappointing.The company is also aggressively expanding overseas. Hugo Barra, Xiaomi’s Vice President for overseas business spoke with CCTV’s Xia Cheng.

July 14, 2015Eric Schiffer on Xiaomi’s global strategy: For more on Xiaomi’s global strategy, CCTV’s Michelle Makori spoke to Eric Schiffer, CEO of Patriarch Equity.

Dec 22, 2014
Tech company Xiaomi flourishes in China, India despite patent disputes: China’s Xiaomi tech company is often compared to Apple. Founded in 2010, Xiaomi has quickly surpassed Samsung to become the top smartphone in China and third in the world. Xiaomi phones are currently only sold online and in China and India.

Dec 22, 2014
Ari Zoldan of Quantum Networks discusses Chinese companies, patent troubles: CCTV America’s Sean Callebs interviewed tech industry expert and CEO of Quantum Networks Ari Zoldan about the rise of Xiaomi and it’s legal battles.

 



Tablet and smartphone market trends

September update: Qualcomm’s smartphone AP revenues declined 17% year-over-year in the second quarter of 2015, Strategy Analytics estimated. Qualcomm maintained its smartphone AP market share leadership with 45% revenue share, followed by Apple with 19% revenue share and MediaTek with 18% revenue share. For the rest 18%: After a difficult 2014, Samsung LSI continued to recover and more than doubled its smartphone AP shipments in the second quarter of 2015 compared to the same period last year. Samsung LSI capitalised on its Galaxy S6 design-win in Q2 2015. In addition the company featured in multiple mid-range smartphones from Samsung Mobile. Full report: Smartphone Apps Processor Market Share Q2 2015: Samsung LSI Maintains Momentum
… The global tablet AP market declined 28% year-over-year to reach US$679 million in the second quarter of 2015, according to Strategy Analytics. Apple, Intel, Qualcomm, MediaTek and Samsung LSI captured the top-five revenue share rankings in the market during the quarter. Apple led the tablet AP market with 27% revenue share, followed by Intel with 18% revenue share. Qualcomm ranked number three, narrowly behind IntelGT400150821[1]Full report: Tablet Apps Processor Market Share Q2 2015: Apple and Intel Maintain Top Two Spots

Digitimes Research saw global tablet shipments fall to 45.76 million units in second-quarter 2015, showing a 10% decrease on quarter and representing more than a 15% decrease on year. Full report: Global tablet market – 2Q 2015 End of September update 

Investors.com comments on tablet and smartphone market trends — Q2’2015:Investors.com comments on tablet and smartphone market trends -- Q2'20151. Apple, Samsung lose ground in tablet market — LG and Huawei gain
2. Apple, Huawei [and Xiaomi] buck slowing smartphone sales trend

As the commenting articles by Investors.com are based on press releases of 2 market research companies I will give the web reference here for those press releases themselves, as well as 3 other press releases not commented on by Investors.com (if there are trend indications in the press releases themselves I will copy them alongside the web reference):

  1. July 29, 2015Worldwide Tablet Market Continues to Decline; Vendor Landscape is Evolving, According to IDCIDC on the Top 5 WW Tablet Vendors between 2014Q2 and 2015Q2“Longer life cycles, increased competition from other categories such as larger smartphones, combined with the fact that end users can install the latest operating systems on their older tablets has stifled the initial enthusiasm for these devices in the consumer market,” said Jitesh Ubrani, Senior Research Analyst, Worldwide Mobile Device Trackers. “But with newer form factors like 2-in-1s, and added productivity-enabling features like those highlighted in iOS9, vendors should be able to bring new vitality to a market that has lost its momentum.”
  2. July 30, 2015Huawei Becomes World’s 3rd Largest Mobile Phone Vendor in Q2 2015 [says Strategy Analytics]
    Strategy Analytics - Huawei becomes world's 3d largest phone vendor in 2015Q2 -- 30-July-2015

    • Woody Oh, Director at Strategy Analytics, said, “… Smartphones accounted for 8 in 10 of total mobile phone shipments during the quarter. The 2 percent growth rate of the overall mobile phone market is the industry’s weakest performance for two years, due to slowing demand for handsets in China, Europe and the US.”
    • Neil Mawston, Executive Director at Strategy Analytics, added, “… Samsung has stabilized volumes in the high-end, but its lower-tier mobile phones continue to face intense competition from rivals such as Huawei in Asia. … Apple outperformed as consumers in China and elsewhere upgraded to bigger-screen iPhone 6 and 6 Plus models.”
    • Ken Hyers, Director at Strategy Analytics, added, “… Huawei is rising fast in all regions of the world, particularly China where its 4G models, such as the Mate7, are proving wildly popular. Huawei has finally overtaken Microsoft to become the world’s third largest mobile phone vendor for the first time ever.”
    • Neil Mawston, Executive Director at Strategy Analytics, added, “Microsoft shipped 27.8 million mobile phones and captured 6 percent marketshare worldwide in the second quarter of 2015. Microsoft’s 6 percent global mobile phone marketshare is sitting near an all-time low. Microsoft continues to lose ground in feature phones, while its Lumia smartphone portfolio is in a holding pattern awaiting the launch of new Windows 10 models later this year. Xiaomi shipped 19.8 million mobile phones and captured 5 percent marketshare worldwide in Q2 2015. Xiaomi remains a major player in the China mobile phone market, but its local and international growth is slowing and Xiaomi is facing intense competition from Huawei, Meizu and others. As a result, Xiaomi may struggle to hold on to its top-five global mobile phone ranking in the coming quarters.”
  3. June 17, 2015Business smartphones shipments in Q1 up 26% from last year, now 27% of total smartphone market [says Strategy Analytics]
    Strategy Analytics - 1Q15 Worlwide Business Smartphone Shipments -- 17-June-2015Android was the most dominant OS in terms of business smartphone shipments in Q1, accounting for nearly 60% of all business smartphones (corporate- and personal-liable). It was also the dominant BYOD device; 68% of personal-liable shipments in Q1 were Android. Apple iOS accounted for only 27% of BYOD shipments in Q1, but was the dominant platform in terms of corporate-liable smartphones, with 48% of Q1 CL shipments. The difference in Android/iOS shipments between the CL and IL categories reflects the continuing corporate perception that iPhones are “safer” than Android-based devices.

    • Shipments of personal-liable smartphones (i.e. “bring your own device,” or BYOD, phones) drove market growth in Q1
    • Strategy analytics defines personal-liable devices as devices purchased by the end-user and expensed back to the company or organization, or devices purchased outright by individual users but used primarily for business purposes linking to corporate applications and backend systems.
    • While personal liable devices dominate worldwide business smartphone shipments, some regions are more resistant to the BYOD trend than others. Such regions include Western Europe and Central Europe, where corporate-liable devices are the dominant types of business smartphones. In Western Europe in Q1, 61% of the 10 million business smart phones were corporate-liable. Central and Eastern Europe had a slightly higher rate of BYOD devices shipped in Q1 — 41% — but the majority of smartphones shipped in this regions was also corporate-liable. This a sharp contrast to North America, where three-quarters of business smartphone shipments are personal-liable. The trend in Western and Eastern Europe reflects the more corporate-centric approach businesses take to mobility in these regions.
  4. July 29, 2015Mobile Broadband Tablet Subscriptions to Double to 200 Million by 2021, says Strategy Analytics Strategy Analytics - Mobile Broadband Tablet Subscription forecasted till 2021 - 29-July-2015

    • Strategy Analytics forecasts global mobile data subscriptions on tablets will more than double from 2015 to 2021, reaching over 200 million
    • Around the globe, over 100 million wireless connections on cellular enabled tablets will be added through 2021. By 2021 tablets will only account for 2 percent of total mobile subscriptions, a 2.7 percent population penetration rate.
  5. July 29, 2015Intel Maintains Top Spot in Non-Apple Tablet Apps Processors in Q1 2015 says Strategy Analytics
    Strategy Analytics - 1Q15 Tablet AP Revenue Share $733M -- 29-July-2015
    ⇒The global tablet applications processor (AP) market declined -6 percent year-over-year to reach $733 million in Q1 2015

    • According to Sravan Kundojjala, Associate Director, “Intel maintained its top spot in the non-Apple tablet AP market in unit terms in Q1 2015. Strategy Analytics estimate Android-based tablets accounted for over 70 percent of Intel’s total tablet AP shipments in Q1 2015. We expect Intel’s Atom X3 cellular tablet chip product line to help Intel maintain its momentum in the tablet AP market.”
    • Stuart Robinson, Executive Director of the Strategy Analytics Handset Component Technologies (HCT) service added, “Strategy Analytics estimates that baseband-integrated tablet AP shipments accounted for over one-fourth of total tablet AP shipments in Q1 2015, helped by a strong push from Qualcomm, MediaTek and Spreadtrum. We expect continued momentum for integrated APs as IntelRockchip and others join the bandwagon.”
  6. July 30, 2015Windows Tablet Shipments Nearly Double in Q2’15, says Strategy Analytics
    ⇒Global Tablet Shipments and Market Share in Q2 2015 (preliminary)
    Strategy Analytics - Global Tablet Shipments and Market Share in Q2 2015 (preliminary) -- 30-July-2015

    • Windows-branded Tablets comprised 9 percent of shipments in Q2 2015, up 4 points from Q2 2014
    • Android-branded Tablet shipment market share was flat at 70 percent in Q2 2015
    • Apple continued its slide in market share down to an all-time low of 21 percent in Q2 2015, 4 points lower than Q2 2014
    • Vendors with strong 3G and LTE connected Tablet strategies such as Huawei, LG, and TCL-Alcatel gained market share as leaders like Apple, Samsung, and the White Box community lost ground
Tablet & Touchscreen Strategies Senior Analyst Eric Smith added, “Windows share continues to improve as more models become available from traditional PC vendors, White Label vendors, and Microsoft itself though a healthy Surface lineup and distribution expansion. The key going forward will be if the coming wave of 2-in-1 Detachable Tablets is a hit with consumers or if they go the way of the Netbook—we remain cautiously optimistic on this point.”
Tablet & Touchscreen Strategies Service Director Peter King said, “Apple’s fortunes will turn around soon as it will launch the 12.9-inch iPad Pro as well as an iPad mini 4 in Q4 2015. New features in iOS 9, which are exclusive to iPad such as multi-tasking and a more convenient soft keyboard, will also help compel upgrades by owners of older iPad models. Meanwhile, Huawei and LG have posted fantastic growth primarily due to well-executed 3G and LTE connected Tablet strategies.”

Then I will add 2 additional information pieces from  Strategy Analytics:

Oct 8, 2014: Replacement Demand to Boost PC Sales in 2015, says Strategy Analytics

Having experienced negative growth since 2012, global PC sales are expected to rise 5 percent in 2015 driven by replacement of an ageing installed base according to Strategy Analytics’ Connected Home Devices (CHD) service report, “Computers in the Post-PC Era: Growth Opportunities and Strategies.”

Click here for the report:

http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=10146

  • PC sales will fall by 4 percent in 2014 before returning to modest growth in 2015 and beyond to support replacement demand.
  • Strategy Analytics’ consumer research of computing device usage in developed markets indicates that PCs remain essential computing devices despite healthy Tablet sales.
    • Frequent Tablet usage has grown by 22 percentage points from 2011 to Q4 2013 up to 32 percent of all households while frequent Mobile PC (excluding Tablets) usage has stayed steady through this period, as 63 percent of all households indicated they frequently used Mobile PCs.
    • Frequent usage of all PCs (including Mobile and Desktop PCs and excluding Tablets) remained above the 90 percent mark of all households, falling only 3 percentage points during this period.

Strategy Analytics - Global Computing Devices Installed Base 2009-2018 -- 8-Oct-2014Quotes:

Eric Smith, Analyst of Connected Home Devices, said: “Multiple PC ownership is falling as Tablet sales supplant replacement demand for secondary PCs mainly used for casual tasks. Still, PCs will remain essential devices as households eventually replace their primary PCs used for productivity tasks such as spreadsheet and video editing or personal banking.”

David Watkins, Service Director, Connected Home Devices, added: “The modern Tablet user experience is quickly arriving on the PC thanks to more affordable 2-in-1 Convertible PCs and new operating systems which blend traditional PC and Tablet user experiences. We see development of these forces aligning perfectly with an older PC installed base ripe for replacement in 2015.”

May 1, 2015: Children Change Disney’s Digital Strategy: “App TV” Now Central To Content Planning by David Mercer

Multiscreen TV behaviour is at the centre of television’s stormy transformation – viewing of broadcast, linear TV on the TV screen is apparently in decline while consumption on smartphones and tablets is increasing. Making sense of the big picture is increasingly challenging, and legacy players like broadcasters and the major content owners are inevitably somewhat resistant to the idea that their traditional businesses are under serious threat.

Strategy Analytics - The New TV - Global TV Capable Screens Installed Base -- 1-May-2015We have monitored the early stages of this transformation for the past decade and see its results in our own research, and we continue to predict further industry disruption in our forecasts. But sometimes it is only when you hear the evidence given in person by a senior executive at a leading global player that the scale of the challenge and opportunity are finally brought home.

This happened at last week’s AppsWorld event in Berlin, where I chaired the TV and Multiscreen conference. The speaker was Andreas Peters, Head of Digital for the Walt Disney Company Germany, Austria and Switzerland. Andreas presented some of the most compelling evidence I have yet heard that television is truly a multiscreen medium for the next generation of viewers.

Disney’s challenge in Germany was to launch a television show called Violetta aimed at 8-12 year old girls. It had been introduced successfully in Argentina but had failed in the UK. As it often does, Disney had invested considerable amounts in merchandising and retailers were eagerly anticipating sales of the new product lines. The show was first broadcast on German free TV on May 1st 2014 but it achieved only very low ratings.

The question for Disney managers was whether traditional TV had stopped working. A crisis meeting was held with a view to writing off the investment. Disney had previously not made its shows available online in Germany but the Violetta situation was so serious they were persuaded to experiment. Two episodes were made available on Youtube with a link to Disney’s own website. Viewing of the content on Youtube very quickly went viral until Disney had achieved a reach of 50% of 8-12 year old girls and eight million views. Violetta went on to become a success in German-speaking markets.

The evidence was clear: for some shows at least, younger children cannot now be reached using the traditional broadcast TV/big screen model. Peters explained that the Violetta experience was transformative for the Disney organisation and led to the inclusion of online and digital media as a key element in the business case for many products. In fact it also led to the development and launch of Disney’s own Watch App, which includes live streaming and seven-day catch-up programmes from the broadcast Disney Channel.

Even after the Violetta experience Disney was sceptical that an app was needed – there was a feeling that the website would be sufficient. Nevertheless the app was launched and Disney had planned for 20,000 downloads. Instead it has passed one million downloads in its first six months. Peters noted: “This was a real shock for us. We completely underestimated the demand.” Around 500,000 viewers are now using the Disney Watch app for linear television viewing, in addition to millions of shows being downloaded for catch-up viewing. Peak app viewing hours are between 6am and 8am and then between 1pm and 9pm on school days, with a different pattern at weekends. Peters made it clear that children did not want lots of features built in to the app – just like TV, they just want to hit “play” and watch.

“Our TV colleagues of course don’t want to believe this,” said Peters. “But the world has changed and it will continue to change.” Disney has also seen a knock-on effect from its app launch with an increase in free-to-air broadcast TV viewing. But the firm is now clear that mobile is not just an add-on to TV or a promotional tool; it must be an integral part of the entire process.

There are many implications for content strategy. TV and Digital have to “understand each other”, which is a challenge when the KPIs in each world are very different. As we have often heard, the video industry is crying out for a set of common metrics which can apply and support advertisers in both TV and online worlds. Video consumption patterns vary and different content may be relevant to different platforms.

But the overall lesson is clear: “TV” is not just the big screen in the corner of the living room. It must embrace multiscreen distribution strategies in order to reach its maximum potential. TV companies are betraying their audiences and their investors if they don’t target the 6.4bn addressable screens available to them.

Cortex-A53 is used alone in higher and higher-end devices as the result of increased competition between MediaTek and Qualcomm

Cortex A53 vs A7 performance

We’ve learned a lot during the last one a half years about the superiority of the Cortex-A53 cores for the mass produced SoCs. Some major points about that you see on the right:

My prediction back in Dec 23, 2013 was that The Cortex-A53 as the Cortex-A7 replacement core is succeeding as a sweet-spot IP for various 64-bit high-volume market SoCs to be delivered from H2 CY14 on. Such a prediction is a reality now as no less than 291 smartphones are listed as of today in PDAdb.net, which are using the Qualcomm Snapdragon 410 MSM8916 quad-core SoC based on Cortex-A53. The first such device, the Lenovo A805e Dual SIM TD-LTE was released in July, 2014.

Meanwhile Qualcomm’s downstream rival, MediaTek is moving up fast with its offerings as well. There are 8 devices based on quadcore MT6732M since Dec’14, 27 devices which based on quad-core MT6732 since Nov’14, and even 6 devices based on octa-core MT6753 since Jan’15. Note however that there are 3 such products from the Chinese brand Meizu, and one each from another local brands, Elephone and Cherry Mobile. Only the ZTE model is from a 1st tier global vendor yet.

My prediction was also proven by the fact that interest in that post was the highest on this blog as soon as the respective new SoCs, and commercial devices based on them arrived:

Cortex A53 vs A7 success on my blog and reasons for that -- 22-June-2015

Now even higher end, octa-core smartphones based on Cortex-A53 alone are coming to the market from 1st tier device vendors

June 1, 2015: Asus ZenFone Selfie (ZD551KL)
(launched on the ASUS Zensation Press Event at Computex 2015)


from the product site:

ZenFone Selfie features the industry’s first octa-core, 64-bit processor — Qualcomm’s Snapdragon 615. With its superb performance and superior power-efficiency you’ll shoot sharp photographs at stupefying speed, record and edit Full HD (1080p) video with minimal battery draw, and enjoy using the integrated 4G/LTE to share everything you do at incredible speeds of up to 150Mbit/s!

expected price in India: ₹12,999 ($205)
(Re: “coming in an incredible price” said in the launch video about the earlier ZenFone 2 (ZE551ML) which has the same price, but a 1.8 GHz Intel Atom Z3560 processor, only 5 MP secondary camera etc.)

from the ASUS Presents Zensation at Computex 2015 press release:

ZenFone Selfie is a unique smartphone designed to capture the best possible selfies, quickly and simply. Featuring front and rear 13MP PixelMaster cameras with dual-color, dual LED Real Tone flash, ZenFone Selfie captures beautiful, natural-looking selfies in gloriously high resolution. The rear camera features a large f/2.0 aperture lens and laser auto-focus technology to ensure near-instant focusing for clear, sharp pictures — even in low-light conditions where traditional cameras struggle.
ZenFone Selfie includes the brilliant ZenUI Beautification mode for live digital cosmetics. A few taps is all that’s needed to soften facial features, slim cheeks, and enhance skin tone to add vibrancy, and all in real time — injecting instant verve into any composition. ZenFone Selfie also has Selfie Panorama mode, which exploits ZenFone Selfie’s f/2.2-aperture front lens and 88-degree field of view to capture panoramic selfies of up to 140 degrees. With Selfie Panorama mode enabled, selfies become a party with all friends included — plus the ability to capture panoramic scenery for stunning backdrops.
ZenFone Selfie has a large 5.5-inch screen that fits in a body that’s a similar size to that of most 5-inch smartphones, for a maximized viewing experience in a compact body that fits comfortably in the hand. It has a high-resolution 1920 x 1080 Full HD IPS display with a wide 178-degree viewing angle and staggering 403ppi pixel density that renders every image in eye-delighting detail. ASUS TruVivid technology brings color to life in brilliant clarity, making selfies and other photos look their best. Tough Corning® Gorilla® Glass 4 covers the display to help protect against scratches and drops.
ZenFone Selfie features the industry’s first octa-core, 64-bit processor for the perfect balance of multimedia performance and battery efficiency — the Qualcomm® Snapdragon™ 615. This extraordinarily powerful chip equips ZenFone Selfie to provide the very best multimedia and entertainment experiences, carefully balancing high performance with superior power-efficiency.

June 19, 2015 by SamMobile: Samsung’s first smartphones with front-facing LED flash, Galaxy J5 and Galaxy J7, now official

Samsung has announced its first smartphones with a front-facing LED flash; the Galaxy J5 and the Galaxy J7. Specifications of these devices were previously leaked through TENAA, and their UI was revealed through Samsung’s own manuals. Now, they have been officially announced in China, where they would be available starting this week, but there’s no clarity about their international launch.
All the mid-range and high-end smartphones from the company released recently have started featuring high-resolution front-facing cameras, and the same is the case with the Galaxy J7 and the Galaxy J5. To complement their 5-megapixel wide-engle front-facing cameras, they are equipped with a front-facing single-LED flash. Other features include a 13-megapixel primary camera with an aperture of f/1.9, 1.5GB RAM, 16GB internal storage, a microSD card slot, dual-SIM card slot, and LTE connectivity. Both these smartphones run Android 5.1 Lollipop with a new UI that is similar to that of the Galaxy S6 and the S6 edge.

The Galaxy J7 is equipped with a 5.5-inch HD display, a 64-bit octa-core Snapdragon 615 processor, a 3,000 mAh battery, and is priced at  1,798 CNY (~ $289). The Galaxy J5 features a slightly smaller 5-inch HD display, a 64-bit quad-core Snapdragon 410 processor, a 2,600 mAh battery, and is priced at 1,398 CNY (~ $225). Both of them will be available in China in three colors; gold, white, and black.

The Galaxy J5 and J7 are targeted at the youth and compete with devices like the HTC Desire EYE, Sony Xperia C4, and the Asus ZenFone Selfie, all of which have high-resolution front-facing cameras with an LED flash.

May 6, 2015: Sony launches next generation “selfie smartphone” – Xperia™ C4 and Xperia C4 Dual

The selfie phenomenon is about to kick up a notch with the introduction of Xperia™ C4 and Xperia C4 Dual – Sony’s next generation PROselfie smartphones, featuring a best in class 5MP front camera, a Full HD display and superior performance.

“Following the success of Xperia C3, we are proud to introduce Sony’s evolved PROselfie smartphone,” said Tony McNulty, Vice-President, Value Category Business Management at Sony Mobile Communications. “Xperia C4 caters to consumers that want a smartphone that not only takes great photos, but also packs a punch. Benefiting from Sony’s camera expertise, the 5MP front-facing camera with wide-angle lens lets you capture perfect selfies, while its quality display and performance features provide an all-round advanced smartphone experience.”
We all like a high-profile selfie – so go ahead and get snapping:
You can now stage the perfect selfie, getting everything – and everyone – in shot, thanks to the powerful 5MP front camera with 25mm wide-angle lens. Sony’s Exmor RTM for mobile sensor, soft LED flash and HDR features means the pictures will always be stunning, even in those ‘hard to perfect’ low light conditions. Superior auto automatically optimises settings to give you the best possible picture and SteadyShot™ technology compensates for any camera shake.
With 13MP, autofocus and HDR packed in there is no compromise on the rear camera, which delivers great shots for those rare moments you’re not in the picture.
You will also be able to get even more fun out of your smartphone with a suite of creative camera apps such as Style portrait with styles including ‘vampire’ and ‘mystery’ to add a unique edge to your selfie. Moreover, apps such as AR maskgive your selfie a twist by letting you place a different face over your own face or others’ faces while you snap a selfie.
Experience your entertainment in Full HD
Now you can enjoy every picture and every video in detail with Xperia C4’s 5.5” Full HD display. Watching movies on your smartphone is more enjoyable thanks to Sony’s TV technology – such as Mobile BRAVIA® Engine 2 and super vivid-mode – which offers amazing clarity and colour brightness. Enjoy viewing from any angle with IPS technology.
Great video deserves great audio to match, so Xperia C4 features Sony’s audio expertise to deliver crisp and clear audio quality. With or without headphones, you can sit back and enjoy your favourite entertainment in all its glory.
The design of Xperia C4 has also been crafted with precise detail and care to ensure every aspect amplifies the sharp and vivid display. A minimal frame around the scratch-resistant screen enhances both the viewing experience and the smartphone design, while its lightweight build feels comfortable in the hand. Xperia C4 comes in a choice of white, black and a vibrant mint.
Superior performance, with a power-packed battery that just keeps going
Whether you’re running multiple apps, checking Facebook, snapping selfies or listening to the best music – you can do it all at lighting speed thanks to Xperia C4’s impressive Octa-core processor. Powered by an efficient 64-bit Octa-core processor [Mediatek MT6752], Xperia C4 makes it easier than ever to multitask and switch between your favourite apps, without affecting performance. Ultra-fast connectivity with 4G capabilities means it’s quicker than ever to download your favourite audio or video content and surf the web without lag.
The large battery (2,600mAh) provides over eight hours of video viewing time, meaning that the entire first season of Breaking Bad can be binged uninterrupted, while Battery STAMINA Mode 5.0 ensures you have complete control over how your battery is used.
Xperia C4 is compatible with more than 195 Sony NFC-enabled devices including SmartBand Talk (SWR30) and Stereo Bluetooth® Headset (SBH60). You can also customise the smartphone with the protective desk-stand SCR38 Cover or with a full range of original Made for Xperia covers.
Xperia C4 will be available in Single SIM and Dual SIM in select markets from the beginning of June 2015.
For the full product specifications, please visit: http://www.sonymobile.com/global-en/products/phones/xperia-c4/specifications/

price in India: ₹25,499 ($400) and ₹25,899 ($408) for the Dual-SIM version

June 1, 2015: The stakes have been raised even higher by a higher-end octa-core SoC from MediaTek with 2GHz cores which is also 30% more energy efficient because of the first time use of 28HPC+ technology of TSMC
MediaTek Expands its Flagship MediaTek Helio™ Processor Family with the P Series, Offering Premium Performance for Super Slim Designs

P-series the first to use TSMC’s 28nm HPC+ process, which reduces processor power consumption

MediaTek, a leader in power-efficient, System-on-Chip (SoC) mobile device technology solutions, today announces the launch of the MediaTek Helio™ P10, a high-performance, high-value SoC focused on the growing demand for slim form-factor smart phones that provide premium, flagship features. The Helio P10 showcases a 2 GHz, True Octa-core 64-bit Cortex-A53 CPU and a 700MHz, Dual-core 64-bit Mali-T860 GPU. The Helio P10 will be available Q3 2015 and is expected to be in consumer products in late 2015.

The P10 is the first chip in the new Helio P family, a series which aims to integrate into a high-value chipset, premium features such as high-performance modem technology; the world’s first TrueBright ISP engine for ultra-sensitive RWWB; and, MiraVision™ 2.0, for top-tier display experiences. The features available in the P series include several of MediaTek’s premier technologies, such as WorldMode LTE Cat-6, supporting 2×20 carrier aggregation with 300/50Mbps data speed; MediaTek’s advanced task scheduling algorithm, CorePilot®, which optimizes the P10’s heterogeneous computing architecture by sending workloads to the most suitable computing device – CPU, GPU, or both; and, MediaTek’s Visual Processing Application – Non-contact Heart Rate Monitoring, which uses only a smartphone’s video camera to take a heart rate reading and is as accurate as pulse oximeters/portable ECG monitoring devices.
“The P series will provide OEM smartphone makers with greater design flexibility to meet consumer demands for slim form-factors, which provide dynamic multimedia experiences,” said Jeffrey Ju, Senior Vice President of MediaTek. “The P10 enables state-of-the-art mobile computing and multimedia features all while balancing performance and battery life.”
The Helio P10 is the first product to use TSMC’s 28nm HPC+ process, which allows for reduced processor power consumption. With the help of the latest 28HPC+ process and numerous architecture and circuit design optimizations, the Helio P10 can save up to 30% more power (depending of usage scenarios), compared to existing smartphone SoCs manufactured using the 28 HPC process.
 “We are pleased to see MediaTek’s achievement in producing the world’s leading 28HPC+ smartphone chip,” said Dr. BJ Woo, Vice President, Business Development, TSMC. “As an enhanced version of TSMC’s 28HPC process, 28HPC+ promises 15% better speed at fixed power or 50% leakage reduction at the same speed over 28HPC. Through our competitive 28HPC+ technology and process-design collaboration with MediaTek, we believe MediaTek will deliver a series of products which benefit smartphone users across the world.”
As with the entire line of Helio SoCs, the P10 is packed with premium multimedia features. With a concentration on advanced display technologies, premium camera features, and HiFi audio, the P10 delivers leading functionality around the features most used on today’s mobile phones:
  • 21MP premium camera with the world’s first TrueBright ISP engine:
    • Enables ultra-sensitive RWWB sensor to capture twice as much light as traditional RGB sensors in order to retain true color and detail, even in low light. The RWWB sensor also enhances the color resolution, even when compared with RGBW sensors.
    • Other features include a new de-noise/de-mosaic HW, PDAF, video iHDR, dual main camera, less than 200ms shot-to shot delay, and video face beautify.
  • Hi-fidelity, hi-clarity audio achieves 110dB SNR & -95dB THD
  • Full HD display at 60FPS with MediaTek’s suite of MiraVision 2.0 display technologies:
    • UltraDimming – Dimmer background lighting for more comfortable reading, even in low-light situations.
    • BluLight Defender – A built-in blue light filter that saves more power than conventional software applications.
    • Adaptive Picture Quality – Ensures the best picture quality when using different applications. True-to-life colors when in camera preview; vibrant colors when watching videos.
The MediaTek Helio P10 will be released in Q3 2015 and is expected to be available in consumer products in late 2015.

Note that Helio P1 is a significant step in MediaTek’s strategy already outlined in the following posts of mine:
– March 4, 2014MediaTek is repositioning itself with the new MT6732 and MT6752 SoCs for the “super-mid market” just being born, plus new wearable technologies for wPANs and IoT are added for the new premium MT6595 SoC
– March 10, 2015MediaTek’s next 10 years’ strategy for devices, wearables and IoT

The Dawn of the SoC 2.0 Era: The TSMC Perspective

From its companion post The Dawn of the SoC 2.0 Era: The ARM Perspective

futureICT - Cortex-A Roadmap Strategy -- April-2015

Source of the slide: ARM Cortex系列核心介绍 (Core ARM Cortex Series Introduction, 52RD, April 13, 2015)

Regarding TSMC itself the April 8 conclusion in TSMC Outlines 16nm, 10nm Plans article by EE|Times is:

“It’s not completely clear who is ahead at 16/14 but I think TSMC is making a major commitment to trying to be ahead at 10,” Jones said. “If that happens and TSMC has closed the gap with Intel, the issue is then if TSMC’s 10 and Intel’s 10 are the same,” he said.

Background from the April 14, 2015 TSMC Symposium: “10nm is Ready for Design Starts at This Moment” article in Cadence Communities Blog:

The 10nm semiconductor process node is no longer in the distant future – it is here today, according to presenters at the recent TSMC 2015 Technology Symposium in San Jose, California. TSMC executives noted that EDA tools have been certified, most of the IP is ready or close to ready, and risk production is expected to begin in the fourth quarter of 2015.

Here are some more details about 10nm at TSMC as presented in talks by Dr. Cliff Hou, vice president of R&D at TSMC (right), and Dr. BJ Woo, vice president of business development at TSMC (below left). At the TSMC Symposium, speakers also introduced two new process nodes, 16HHC and 28HPC+ (see blog post here).

According to Woo, TSMC is not only keeping up with Moore’s Law – it is running ahead of the law with its 10FF offering. “We have done a lot more aggressive scaling than Moore’s Law demands for our 10nm technology,” she said. A case in point is the fully functional 256Mb SRAM with a cell size that is approximately 50% smaller than the 16FF+ cell size. She called this an “exceptional shrink ratio” that goes beyond traditional scaling.

And it’s not just SRAM. The 10FF node, Woo said, can scale key pitches by more than 70%. Combine that with innovative layout, and 10nm can achieve almost 50% die size scaling compared to 16FF+. “And this is very, very aggressive,” she said.

After noting that the 16FF+ already provides “clear performance leadership,” Woo said that 10FF offers a 22% performance gain over 16FF+ at the same power, or more than 40% power reduction at the same speed. This comparison is based on a TSMC internal ring oscillator benchmark circuit. For the Cortex-A57 test chip used to validate EDA tools, the result was a 19% speed increase at the same power, and a 38% power reduction at the same speed.

New features in 10FF include a unidirectional (1D) layout style and new local interconnect layer. These features help 10FF achieve a 2.1X logic density improvement over 16FF+, whereas normally TSMC gets about a 1.9X density boost for node migration, Woo said. In addition to the density improvement, the 1D Mx architecture can reduce CD (critical dimension) variation by 60%, she said.

And an already remarkable quote from April 12, 2015 TSMC Symposium: New Low-Power Process, Expanded R&D Will Drive Vast Innovation: TSMC Executive article in Cadence Communities Blog:

Hock Tan, CEO of Avago, described a symbiotic relationship between TSMC and his company that led to a super high-density switch for a networking customer, implemented in 16FF+. The switch has 96 ports, each running 100G Gbps, and drawing less than 2W each. That enables, in a next-generation data center, the tripling of a switch performance to more than 10 Tbps.

Moreover, according to the April 12, 2015 TSMC Symposium: New 16FFC and 28HPC+ Processes Target “Mainstream” Designers and Internet of Things (IoT) article from Cadence Communities Blog:

16FFC is a “compact” version of the 16nm FinFET+ (16FF+) process technology that is now in risk production at TSMC. It claims advantages in power, performance, and area compared to the existing 16FF+ process, along with easy migration from 16FF+. It can be used for ultra low-power IoT applications such as wearables, mobile, and consumer.

28HPC+ is an improved version of the 28HPC (High Performance Compact) process, which is itself a fairly recent development. Late last year 28HPC went into volume production, and it provides a 10% smaller die size and 30% power reduction compared to TSMC’s earlier 28LP process. 28HPC+ ups the ante by providing 15% faster speed at the same leakage, or 30-50% reduction in leakage at the same speed, compared to 28HPC.

TSMC also provided updates on other processes on its roadmap, which includes the following:

  • High Performance – 28HP, 28HPM, 20SoC, 16FF+
  • Mainstream – 28LP, 28HPC, 28HPC+, 16FFC
  • Ultra Low Power – 55ULP, 40ULP, 28ULP, 16FFC (16FFC is in both mainstream and low power categories)

In connection with that remember the September 29, 2014 announcement:
TSMC Launches Ultra-Low Power Technology Platform for IoT and Wearable Device Applications

TSMC (TWSE: 2330, NYSE: TSM) today announced the foundry segment’s first and most comprehensive ultra-low power technology platform aimed at a wide range of applications for the rapidly evolving Internet of Things (IoT) and wearable device markets that require a wide spectrum of technologies to best serve these diverse applications. In this platform, TSMC offers multiple processes to provide significant power reduction benefits for IoT and wearable products and a comprehensive design ecosystem to accelerate time-to-market for customers.

TSMC’s ultra-low power process lineup expands from the existing 0.18-micron extremely low leakage (0.18eLL) and 90-nanometer ultra low leakage (90uLL) nodes, and 16-nanometer FinFET technology, to new offerings of 55-nanometer ultra-low power (55ULP), 40ULP and 28ULP, which support processing speeds of up to 1.2GHz. The wide spectrum of ultra-low power processes from 0.18-micron to 16-nanometer FinFET is ideally suited for a variety of smart and power-efficient applications in the IoT and wearable device markets. Radio frequency and embedded Flash memory capabilities are also available in 0.18um to 40nm ultra-low power technologies, enabling system level integration for smaller form factors as well as facilitating wireless connections among IoT products.

Compared with their previous low power generations, TSMC’s ultra-low power processes can further reduce operating voltages by 20% to 30% to lower both active power and standby power consumption and enable significant increases in battery life — by 2X to 10X — when much smaller batteries are demanded in IoT/wearable applications.

“This is the first time in the industry that we offer a comprehensive platform to meet the demands and innovation for the versatile Internet of Things market where ultra-low power and ubiquitous connectivity are most critical,” said TSMC President and Co-CEO, Dr. Mark Liu. “Bringing such a wide spectrum of offerings to this emerging market demonstrates TSMC’s technology leadership and commitment to bring great value to our customers and enable design wins with competitive products.”

One valuable advantage offered by TSMC’s ultra-low power technology platform is that customers can leverage TSMC’s existing IP ecosystem through the Open Innovation Platform®. Designers can easily re-use IPs and libraries built on TSMC’s low-power processes for new ultra-low power designs to boost first-silicon success rates and to achieve fast time-to-market product introduction. Some early design engagements with customers using 55ULP, 40ULP and 28ULP nodes are scheduled in 2014 and risk productions are planned in 2015.

“TSMC’s new ultra-low power process technology not only reduces power for always-on devices, but enables the integration of radios and FLASH delivering a significant performance and efficiency gain for next-generation intelligent products,” said Dr. Dipesh Patel, executive vice president and general manager, physical design group, ARM. “Through a collaborative partnership that leverages the energy-efficient ARM® Cortex®-M and Cortex-A CPUs and TSMC’s new process technology platform, we can collectively deliver the ingredients for innovation that will drive the next wave of IoT, wearable, and other connected technologies.”

“Low power is the number one priority for Internet-of-Things and battery-operated mobile devices,” said Martin Lund, Senior Vice President and General Manager of the IP Group at Cadence. “TSMC’s new ULP technology platform coupled with Cadence’s low-power mixed-signal design flow and extensive IP portfolio will better meet the unique always-on, low-power requirements of IoT and other power sensitive devices worldwide.”

CSR has an unequalled reputation in Bluetooth technology and has been instrumental in its progression, including helping to write the Bluetooth Smart standard that is meeting the demands of today’s rapidly evolving consumer electronics market,” said Joep van Beurden, CEO at CSR. “For many years, CSR has closely collaborated with TSMC, and we are pleased to demonstrate the results of that collaboration with the adoption of the 40ULP platform for our next generation of Bluetooth Smart devices including products for markets like smart home, lighting and wearables that are enabling the growth of the Internet of Things. Our solutions simplify complex customer challenges and help speed their time to market by allowing them to design and deliver breakthrough low power wireless connected products on these powerful new platforms.”

“The imaging SoC solutions of Fujitsu Semiconductor Limited bring the best balance between high imaging quality and low power consumption, to meet the significant demand from our customers and the electronics market,” said Tom Miyake, Corporate Vice President, at System LSI Company of Fujitsu Semiconductor Limited. “We welcome that TSMC is adding the 28ULP technology to its successful 28nm platform. We believe this technology will provide our SoCs with the key feature: low power consumption at low cost.”

Nordic Semiconductor has been a pioneer and leader in ultra-low power wireless solutions since 2002, and with the launch of its nRF51 Series of Systems-on-Chip (SoCs) in 2012 the company established itself as a leading vendor of Bluetooth Smart wireless technology,” said Svenn-Tore Larsen, CEO of Nordic Semiconductor. “We have been collaborating closely with TSMC on the selection of process technology for our upcoming nRF52 Series of ultra-low power RF SoCs. I am happy to announce that we have selected the TSMC 55ULP platform. This process is a key enabler for us to push the envelope on power consumption, performance and level of integration of the nRF52 Series to meet the future requirements of Wearable and Internet of Things applications.”

“Built on TSMC’s Ultra-Low Power technology platform and comprehensive design ecosystem, Realtek’s Bluetooth Energy Efficient smart SoC, BEE, supports the latest Bluetooth 4.1 specification featuring Bluetooth Low Energy (BLE) and GATT-based profiles,” said Realtek Vice President and Spokesman, Yee-Wei Huang. “BEE’s power efficient architecture, low power RF, and embedded Flash are ideal both for the IoT and for wearable devices such as smart watches, sport wristbands, smart home automation, remote controls, beacon devices, and wireless charging devices.”

Silicon Labs welcomes TSMC’s ultra-low power initiative because it will enable a range of energy-friendly processing, sensing and connectivity technologies we are actively developing for the Internet of Things,” said Tyson Tuttle, Chief Executive Officer, Silicon Labs. “We look forward to continuing our successful collaboration with TSMC to bring our solutions to market.”

“Synopsys is fully aligned with TSMC on providing designers with a broad portfolio of high-quality IP for TSMC’s ultra-low power process technology and the Internet of Things applications,” said John Koeter, Vice President of Marketing for IP and Prototyping at Synopsys. “Our wide range of silicon-proven DesignWare® interface, embedded memory, logic library, processor, analog and subsystem IP solutions are already optimized to help designers meet the power, energy and area requirements of wearable device SoCs, enabling them to quickly deliver products to the market.”

As well as the ARM and Cadence Expand Collaboration for IoT and Wearable Device Applications Targeting TSMC’s Ultra-Low Power Technology Platform announcement of Sept 29, 2015:

ARM® and Cadence® today announced an expanded collaboration for IoT and wearable devices targeting TSMC’s ultra-low power technology platform. The collaboration will enable the rapid development of IoT and wearable devices by optimizing the system integration of ARM IP and Cadence’s integrated flow for mixed-signal design and verification, and their leading low-power design and verification flow.

The partnership will deliver reference designs and physical design knowledge to integrate ARM Cortex® processors, ARM CoreLink™ system IP, and ARM Artisan® physical IP along with RF/analog/mixed-signal IP and embedded flash in the Virtuoso®-VDI Mixed-Signal Open Access integrated flow for the new TSMC process technology offerings of 55ULP, 40ULP and 28ULP.

“TSMC’s new ULP technology platform is an important development in addressing the IoT’s low-power requirements,” stated Nimish Modi, senior vice president of Marketing and Business Development at Cadence. “Cadence’s low-power expertise and leadership in mixed-signal design and verification form the most complete solution for implementing IoT applications. These flows, optimized for ARM’s Cortex-M processors including the new Cortex-M7, will enable designers to develop and deliver new and creative IoT applications that take maximum advantage of ULP technologies.”

“The reduction in leakage of TSMC’s new ULP technology platform combined with the proven power-efficiency of Cortex-M processors will enable a vast range of devices to operate in ultra energy-constrained environments,” said Richard York, vice president of embedded segment marketing, ARM. “Our collaboration with Cadence enables designers to continue developing the most innovative IoT devices in the market.”

This new collaboration builds on existing multi-year programs to optimize performance, power and area (PPA) via Cadence’s digital, mixed-signal and verification flows and complementary IP alongside ARM Cortex-A processors and ARM POP™ IP targeting TSMC 40nm, 28nm, and 16nm FinFET process technologies. Similarly, the companies have been optimizing the solution based around the Cortex-M processors in mixed-signal SoCs targeting TSMC 65/55nm and larger geometry nodes. The joint Cortex-M7 Reference Methodology for TSMC 40LP is the latest example of this collaboration.

For the above keep in mind The TSMC Grand Alliance [TSMC, Dec 3, 2013]:

The TSMC Grand Alliance is one of the most powerful force for innovation in the semiconductor industry, bringing together our customers, EDA partners, IP partners, and key equipment and materials suppliers at a new, higher level of collaboration.

The objectives of the TSMC Grand Alliance are straightforward: to help our customers, the alliance members and ourselves win business and stay competitive.

We know collaboration works. We have seen it in the great strides our customers and ecosystem members have made through the Open Innovation Platform® where today there are 5,000 qualified IP macros and over 100 EDA tools that supports our customers’ innovation and helps them attain maximum value from TSMC’s technology.

Today Open Innovation Platform is an unmatchable design ecosystem and a key part of the Grand Alliance that will prove much more powerful. Looking at R&D investment alone, we calculate that TSMC and ten of our customers invest more in R&D than the top two semiconductor IDMs combined.

Through the Grand Alliance TSMC will relentlessly pursue our mission and collaborate with customers and partners. We need each other to be competitive. We need each other to win. Such is the power of the Grand Alliance.

[Some more information is in the very end of this post]

A related overview in Kicking off #ARMWearablesWK with an analysts view of the market post of November 17, 2014 of ARM Connected Community blog by David Blaza:

Today as we kickoff ARM Wearables Week we hear from Shane Walker of IHS who is their Wearables and Medical market expert.

Shane’s take on this market is that it’s for real this time (there was a brief Smartwatch wave a few years ago) and will continue to be a hot growth sector through 2015. One of the great benefits of talking with analysts like Shane is they help you think through what’s going on and bust a few myths that may have found their way into our thinking. For example I asked Shane what the barriers to growth were and he carefully and patiently pointed out that Wearables are growing at a 21% CAGR already and will hit $12b in device sales this year (without services, more on that later in the week).  So this is not an emerging or promising market, it’s here and growing at an impressive rate. By 2019 Shane’s estimate is that it will hit $33.5b in device sales and services are increasingly going to factor into the wearables experience (Big Data is coming!).

Shane breaks the Wearables market down to 5 major categories:

  1. Healthcare and Medical
  2. Fitness and Wellness
  3. Infotainment
  4. Industrial
  5. Military

I’m glad he did this for me because wearables are incredibly diverse and this week you are going to see some category defying products here such as smart Jewelry where does that fit?

Below you can see a table chart that Shane was willing to share that shows his estimate for market size and units sold, the main learning for me is how much of this market is healthcare related. Also attached below are details on what services IHS offer in the Wearables market or you can find them here.

futureICT - World Market for Wearable Technology - Revenue by Application -- IHS-November-2014

attached is: Wearable Technology Intelligence Service 2014.pdf  [IHS Technology, November 17, 2014]

Note the following table in that:
futureICT - Wearable Technology Data Coverage Areas by IHS

More information:
– A Guide to the $32b Wearables Market [IHS Technology, March 11, 2015]
– which has a free to download whitepaper:
Wearable Technology: The Small Revolutions is Making Big Waves

Brief retrospective on the SoC 1.0 Era

futureICT - Shipments of TSMC Advanced Technologies Q1'2009 - Q1'2015

Detailed Background from TSMC’s quaterly calls

Q1 2015:

Mark Liu – TSMC – President & Co-CEO
[update on new technology]

The continuous demand of more functionality and integration in smartphones drives for more silicon content. We expect smartphones will continue to drive our growth in the next several years.

In the meantime, we see IoT appears us — present us new growth opportunities. The proliferation of IoT not only will bring us growth in the sensor, connectivity and advanced packaging areas, the associated application and services, such as big data analytics, will also further our growth in the computation space, including application processor, network processor, image processor, graphic processor, microcontroller and other various processors. That was the long-term outlook.

I’ll update some of our 10-nanometer development progress. Our 10-nanometer technology development is progressing well. Our technology qualification remains in Q4 this year.

Recently we have successfully achieved fully functional yields of our 256-megabit SRAM. Currently we have more than 10 customers fully engaged with us on 10-nanometer. We still expect to have 10-nanometer volume ramp in fourth quarter 2016 and to contribute billing in early 2017.

This technology adopts our third-generation FinFET transistor and have scaling more than one generation. Its price is fully justified by its value for various applications, including application processor, baseband SoC, network processor, CPU and graphic processors. Its cost and price ratio will comply to our structural profitability considerations.

As for new technology development at TSMC, I’d like to start with — to update you our 7-nanometer development. We have started our 7-nanometer technology development program early last year. We also have rolled out our 7-nanometer design and technology collaboration activity with several of our major customers. Our 7-nanometer technology developments today are well in progress.

TSMC’s 7-nanometer technology will leverage most of the tools used in 10-nanometer, in the meantime achieve a new generation of technology value to our customers. The 7-nanometer technology risk production date is targeted at early 2017.

Now I would like to give you an update on EUV. We have been making steady progress on EUV. Both our development tools, we have two NXE 3300 have been upgraded to the configuration of 80 watt of EUV power, with an average wafer throughput of a few hundred wafers per day. We continue to work with ASML to improve tool stability and availability. We also are working with ASML and our partners on developing the infrastructure of EUV, such as masks and resists.

Although today the process on record of both 10-nanometers and 7-nanometer are on immersion tools, with innovative multiple patterning techniques, we will continue to look for opportunity to further reduce the wafer cost and simplify the process flow by inserting EUV layer in the process.

Now I’d like to give you an update of our recently announced ultra-low-power technologies. We have offered the industry’s most comprehensive ultra-low-power technology portfolio, ranging from 55-nanometer ULP, 40-nanometer ULP, 28-nanometer ULP, to the recently announced 16 FFC, a compact version of 16 FinFET Plus, enable continual reduction of operating voltage and power consumption. Today more than 30 product tape-outs planned in 2015 from more than 25 customers.

This 55- and 40-nanometer ULP will be the most cost-effective solution for low- to mid-performance wearable and IoT devices. The 28 ULP and 16 FFC will be the most power-efficient solution for high-performance IoT applications. In particular, our 16 FFC offers the ultra-low-power operation at a supply voltage of 0.55 volts, with higher performance than all of the FD-SOI technologies marketed today.

Lastly I’ll give you an update of our recent IoT specialty technology development. We have developed the world’s first 1.0-micron pixel size 16-megapixel CMOS image sensor, with stacked image signal processor, which was announced in March by our customer for the next-generation smartphone. Secondly, we continue to drive the best low resistance in BCD [Bipolar-CMOS-DMOS for DC-to-DC converter: together with Ultra-High-Voltage (UHV) technology for AC-to-DC converter—are the key to enable monolithic integrated PMIC design] technology roadmap, from 0.18 micron to 0.13 micron and from 8-inch to 12-inch production for wireless charging and fast wired charging of mobile devices. We continue to extend our 0.13 BCD technology from consumer and industrial applications to automotive-grade electrical system control applications.

Lastly, recently we have started production in foundry’s first 40-nanometer industrial embedded Flash technology that was started from November last year. And this technology recently passed automotive-grade qualification, that was in March, for engine control applications.

C.C. Wei – TSMC – President & Co-CEO

I will update you the 28-nanometer, 20 and 16 FinFET status and also our InFO business.

First, 28-nanometer. This is the fifth year since TSMC’s 28-nanometer entered mass production. 28-nanometer has been a very large and successful node for us. Our market segment share at this node has held up well and is in the mid-70s this year. We expect this to continue in year 2016. In comparison, this is better than what we had in the 40-nanometer node.

The demand for 28-nanometer is expected to grow this year due to the growth of mid- and low-end smartphones and as well as the second-wave segment, such as radio frequency, circuit product and the Flash controllers that migrate into this node.

However, due to some customers’ inventory adjustments, which we believe is only going to be for the short term, the demand for 28-nanometer in the second quarter will be lower than our previous quarter, resulting in 28-nanometer capacity utilization rate to be in the high-80s range. But we expect the utilization rate of the 28-nanometer to recover soon and to be above 90% in the second half of this year.

While we are in the mass production, we also continue to improve the performance of our technology. Last year we have introduced our 28-HPC, which is a compact version of 28-HPM. For the purpose of helping 64-bit CPU conversion for mid- to low-end market, this year we further improved the 28-HPC to 28-HPC Plus. For comparison, 28-HPC Plus will have 18% power consumption — lower power consumption at the same speed or 15% faster speed at the same kind of power.

As for the competitive position, we are confident that we will continue to lead in performance and yield. So far we do not see there is a very much effective capacity in High K metal gate at 28-nanometer outside TSMC. And since we have already shipped more than 3m 12-inch 28-nanometer wafers, the learning curve has given us an absolute advantage in cost.

Now let me move to our 20 SoC. TSMC remains the sole solution provider in foundry industry for 20-nanometer process. Our yield has been consistently good after a very successful ramp last year. But recently we have observed customers’ planned schedule for product migration from 20 nanometer to 16 FinFET started sooner than we forecasted three months ago.

As a result, even we continue to grow 20-nanometer business in the second quarter of this year, our earlier forecast of 20-nanometer contributing above 20% of total wafer revenue this year has to be revised down by a few points to a level about the mid teens. That being the case, we still forecast the revenue from 20-nanometer will more than double that of year 2014’s level.

Now 16 FinFET. The schedule for 16 FinFET high-volume production remains unchanged. We will begin ramping in the third quarter this year. And the ramp rate appeared be faster than we forecasted three months ago, thanks to the excellent yield learning that we can leverage our 20-nanometer experience and also due to a faster migration from 20-nanometer to 16 FinFET.

In addition to good yield, our 16 FinFET device performance also met all products’ specs due to our very good transistor engineering. So we believe our 16 FinFET will be a very long-life node due to its good performance and the right cost. This is very similar to our 28-nanometer node.

We are highly confident that our 16 FinFET is very competitive. As we’ve said repeatedly, combining 20-nanometer and 16-nanometer, we will have the largest foundry share in year 2015. And if we only look at 16-nanometer alone, we still can say TSMC will have the largest 16- or 14-nanometer foundry share in year 2016.

Now let me move to our InFO business update. The schedule to ramp up the InFO in second quarter next year remains unchanged. We expect InFO will contribute more than $100m quarterly revenue by next year, fourth quarter next year, when it will be fully ramped.

Right now we are building a new facility in Longtan, that’s a city very near to Hsinchu, where our headquarters are, for ramping up InFO. Today a small product line is almost complete and it’s ready for early engineering experiment. This pilot line will be expanded to accommodate the high-volume ramp in year 2016.

Andrew Lu – Barclays – Analyst

… I think Mark presented at the Technology Symposium in San Jose mentioned that 16 FinFET versus competing technology is about 10% performance better. So can you elaborate what’s 10% performance better? If our die size is larger than our competitors, how can we get the 10% performance better?

Mark Liu – TSMC – President & Co-CEO

In the conference we talked about 16 FinFET Plus. That is our second-generation FinFET transistor. In that we improved our transistor performance a great deal. According to our information, that transistor speed, talk about speed at fixed power, is higher than the competitor by 10%. That’s what I meant. …  Because of the transistor structure, transistor engineering.

Andrew Lu – Barclays – Analyst

Compared to competing — is the competing the current competitor’s solution or the next-generation competitor’s solution? For example, LPE versus LPP or something like that?
Mark Liu – TSMC – President & Co-CEO
The fastest one. The fastest.
Andrew Lu – Barclays – Analyst
Their best one?
Mark Liu – TSMC – President & Co-CEO
Yes.

Dan Heyler – BofA Merrill Lynch – Analyst

My second question is relating to 20-nanometer. Here you certainly have a lot of growth in 16, with customers taping out aggressively, especially next year. Given your high share at 28, how do you keep 28 full? You obviously have a lot of technology there. Customers will move forward.

So I’m wondering, could you elaborate on new areas that are actually creating new demand at 28, such that you can continue to grow 28 next year. And do you think you can grow? I think previously you said maybe hold it at current levels even with 16 growing. So just maybe revisit that question.

C.C. Wei – TSMC – President & Co-CEO

To answer the question, I think the high-end smartphone will move to 16 FinFET. However, the mid- to — and lower-end smartphones will stay in the 28-nanometer because that’s very cost effective. And mid- and low-end smartphone continues to grow significantly. So that will give a very strong demand on 28-nanometer. In addition, we still have a second-wave product, like RF and Flash controller, as I use as an example, move into 28-nanometer.

So summing it up, I think the 28-nanometer’s demand continue to grow while we move into the 16 FinFET for high-end smartphone.

Michael Chou – Deutsche Bank – Analyst

As Mark has highlighted your EUV program, Does that imply you may consider using EUV in the second stage of your 16-nanometer — 10-nanometer ramp-up, potentially in 2018 or 2019? 

Mark Liu – TSMC – President & Co-CEO

Yes, we always look for opportunity to insert EUV in both 10-nanometer and 7-nanometer. The EUV technology provides not only some cost benefit, but also simplify the process. That means you can replace multiple layers with one layer that helps your yield improvement. So there’s opportunity both in quality and cost always exist so long as EUV’s productivity comes to the threshold point.

And in — as you noticed on 10-nanometer, our capacity build will largely done in 2016 and 2017. So 2018 will be inserted, if inserted, will be combined with some other tools upgrade, some tool upgrade to 7, for example, and replaced by the EUV tools. In that node it will not be a fresh capacity build with EUV at that time because that’s a little bit late in the schedule for the 10.

7-nanometer, of course it will be higher probability adopting EUV. And the benefit will be bigger because the 7-nanometer has a lot of multiple layers, quadruple, even multiple patterning layers, thus EUV can be more effective in reducing the cost and improve the yield, for example. So that’s our current status.

But today EUV is still in the engineering mode. The productivity, as you heard, will still have some gaps for practical insertion of the technology. So we’re still working on that, in that mode. And we have — although we have one-day performance up to 1,000 wafer per day, but I was talking about average still a few hundreds. And we need to get to more than 1,000 to consider a schedule to put it into the production.

Randy Abrams – Credit Suisse – Analyst

As you go to fourth quarter, how broad is the customer base? Is it a single key product or are you seeing broadening out of 16 FinFET as you ramp that in fourth quarter?

Mark Liu – TSMC – President & Co-CEO

… As for the second half, we think, first of all, the inventory adjustment will largely complete towards the end of second quarter.

We think the end market of smartphone is still healthy growth this year. Therefore the second half will resume the growth. And, more importantly, our 16 FinFET technology will start to ramp in the second half. So that will contribute a lot of growth, more than the 20-nanometer shipment reduction. So those two factors.

Roland Shu – Citigroup – Analyst

My first question is on given the fast ramp of 16-nanometer, so are we going to see meaningful revenue contribution for 16 in 3Q?

C.C. Wei – TSMC – President & Co-CEO

We ramp up in third quarter this year, but it’s many layers of process, plus about one month is back-end. So in 3Q we expect just the revenue just very minimum.

Bill Lu – Morgan Stanley – Analyst

This is a follow-up to Randy’s question. But I’m going to go over some numbers with you first before I ask the question, which is we did the math. I don’t think these are exactly right. But over the last five years we’ve got IDM zero growth, fabless 8%, but system houses above 20%, right. So system houses, I’m excluding memory, just the system LSI, the logic portion. I think that might be slightly conservative.

Now that’s a pretty big change. And I’m wondering how you should think about that, how you should — if you look at TSMC addressing the system houses versus the fabless customers, if you look at, for example, your market share, if you look at your margin for the system houses versus the fabless, how do you think about that?

Mark Liu – TSMC – President & Co-CEO

Yes. Indeed, in the past five years the system houses sourcing and foundry business to us has a much higher growth rate, as you quoted. But remember, that came from a very small base. Okay? But we welcome system house sourcing because we consider them are fabless too, fabless companies, the companies without fabs, bring business to us.

It’s not necessarily the margin has to do with what type of company sourced. It has to do with our value to that company and also the size, the size of the business. If the business is bigger, of course the — we probably can enjoy a slightly — a little bit better price. So it depends on the size of the business, less dependent on what company, system company or non-system company’s business.

Steven Pelayo – HSBC – Analyst

For the last three years or so, TSMC’s been growing 20%, 30% year-on-year revenue growth rates. First quarter 50% year on year. But to Bill’s question there, it does look like in the second half of the year, if I play around with your full-year guidance and what you’re doing, low single-digit year-on-year growth rates. And if we exclude maybe 16-nanometer, above 16-nanometer, maybe it’s flat to down. Is that the new industry? What are we talking now for industry growth rates for both the semi industry and in the foundry market this year?

90 days ago you suggested the semi market was going to grow 5% this year with foundries growing 12%. In light of your new guidance, in light of what it looks like you’re going to have very slight year-on-year growth rates in the second half of the year, what do you think that means for the overall industry?

Mark Liu – TSMC – President & Co-CEO

We think the semiconductor growth this year currently is indeed we adjusted down from 5% earlier to 4% at this time. Yes. We think it’s really due to the macroeconomic situation around the world today. And therefore the foundry market — foundry growth rate will adjusted down too. We are looking at about 10% range. So that’s why we revised our view on the current semiconductor growth.

Brett Simpson – Arete Research – Analyst

My question on 10-nanometer, I know it’s still 18 months away from ramp-up, but can you talk about how fast this ramp might scale relative to 20-nanometer or 28-nanometer?

And as you ramp up 10-nanometer for high-end smartphones, would you expect low-end smartphones to start migration from 28 with 16 FinFET in 2017?
Elizabeth Sun – TSMC – Director of Corporate Communications
… Your question seems to say that if we ramp 10-nanometer in the future, which will be targeting the high-end smartphone, will the low-end smartphone be migrating from 28-nanometer into 16-nanometers.
Brett Simpson – Arete Research – Analyst
And  just to add to that, Elizabeth, how quickly will 10-nanometer scale up relative to the scaling of 20-nanometer — the ramp-up of 20-nanometer and 28? Will it be as fast?
Elizabeth Sun – TSMC – Director of Corporate Communications
So the profile of the 10-nanometer ramp, will that be steeper than the profile of the 20 or the 28-nanometer?

Mark Liu – TSMC – President & Co-CEO

Okay. The first part of the question has to do with 10-nanometer ramp for the high-end smartphone, will the mid/low-end move to 16? I think we — this is up to our customers’ product portfolio. We definitely know a lot of customer is looking at 28-nanometer to use — to do as the low end. But the specification, the smartphone processor specification changes constantly. So what portion of that product will move to 16-nanometer? We think definitely there are some portion, but how a big portion really depends on their product strategy.

On the 10-nanometer ramp, I wouldn’t say it’s bigger. But at least it’s similar scale of our ramp as we do in 16 and as we do in 20.

Brett Simpson – Arete Research – Analyst Great.

Thank you. And let me just have a follow-up here. There’s been a lot of talk in the industry about one of your larger customers [Qualcomm] planning to introduce a new application processor on both Samsung’s 14-nanometer process as well as your 16 FinFET for the same chip later this year. And we haven’t really seen a single chip get taped out on two new processors at the same time before in the industry. So my question, how does this really work between the two foundries? Does it mean that that one customer can adjust dynamically, month to month, how they allocate wafers between you and Samsung? Or am I — or how might this work?
Elizabeth Sun – TSMC – Director of Corporate Communications … So your question seems to say that there is a customer that appeared to be working with two different foundries on the 14 and 16-nanometer node. And the products are about to arrive. You would like to understand how this customer will be allocating month by month the — what’s the production or the orders with both of the two foundries. Is that your question?
Brett Simpson – Arete Research – Analyst
Yes, that’s right. Whether they can move around dynamically how they allocate wafers. That’s right.

C.C. Wei – TSMC – President & Co-CEO

Well my answer is very typical. Our 16 FinFET is really very competitive. And we did not know that customer going to — how they’re going to allocate. I cannot even make any comment on that.

Gokul Hariharan – JPMorgan – Analyst

First of all on 16-nanometer, since Dr. Wei mentioned that next year a lot of demand on entry-level to mid-end smartphone is still going to stay at 28-nanometer, could you talk about your visibility for second-wave demand for 16-nanometer? 

What is the visibility that you have? Is it going to be really strong? Because you mentioned that a lot of the cost-sensitive customers would still stay on 28, at least for next year.

C.C. Wei – TSMC – President & Co-CEO

For 28-nanometer I said mid to low end this year that, and next year probably, that smartphone will stay in 28-nanometer because it’s very cost-effective and performance-wise is very good. For 16 FinFET I think that people will start to move with their product plan and some of the mid-end smartphone will move into 16-nanometer. That’s for sure.

In addition to that, we also see improving our 16 FinFET ultra-lower-power Mark just mentioned. And that will have a lot of application. And every product, lower power consumption is one of that advantage.

And so that would be our second wave of 16 FinFET.

Dan Heyler – BofA Merrill Lynch – Analyst

… So on 16, this FinFET Compact which is getting introduced, when would we expect to see that in volume production?

C.C. Wei – TSMC – President & Co-CEO

FFC? That will be ready next year. And we expect that high-volume production starts probably two years later. That’s year 2017. 2018 will reach the high volume.

Dan Heyler – BofA Merrill Lynch – Analyst

Okay. So is there a — so the cost-down version for mid-end phones FinFET that you alluded to, plus low power, when is that available?

C.C. Wei – TSMC – President & Co-CEO

Probably in 2017 second half.

Q4’2014:

Lora Ho – Taiwan Semiconductor Manufacturing Company Ltd – SVP and CFO

During the fourth quarter, the strong 20-nanometer ramp was mainly driven by communication-related applications. As a result, communication grew 18% sequentially and the revenue contribution increased from 59% in the third quarter to 65% in the fourth quarter. As for other applications, computer grew 7%, while consumer and industrial declined 21% and 11% respectively.

On a full-year basis, communication increased 39% and represented 59% of our revenue. The major contributing segments included baseband, application processors, image processors and display drivers. Another fast-growing application in 2014 was industrial and standard, which grew 30% year over year. The growth was mainly driven by increasing usage of power management ICs, near-field communications and audio codec within the mobile devices.

By technology, 20-nanometer revenue contribution started with a very small number in the second quarter, jumped to 9% in the third quarter and reached 21% in the fourth quarter. Such unprecedented ramp cannot be achieved without seamless teamwork with our customer, the R&D and operational people in TSMC.

On a full-year basis, 20 nanometer accounted for about 9% of our full-year wafer revenue. Looking forward, we are confident that 20 nanometer will continue its momentum to contribute 20% of the revenue for the whole year 2015.

Meanwhile, customer demand for our 28-nanometer wafers remained strong. Accordingly, these two advanced technologies, 20 nanometer plus 28 nanometer, represented 51% of our fourth-quarter total wafer revenue, a big increase from 43% in the third quarter.

Mark Liu – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

Now I’ll give you a few words on 10-nanometer development update. Our 10-nanometer technology development is progressing and our qualification schedule at the end of 2015, end of this year, remains the same. We are now working with customers for their product tape-outs. We expect its volume production in 2017.

On the new technology development in TSMC, I’ll begin with beyond 10 nanometer I just talked about. We are now working on our future-generation platform technology development, with separate dedicated R&D development teams. These technologies will be offered in the 2017-to-2019 period. We are committed to push forward our technology envelope along the silicon scaling path.

In addition to the silicon device scaling, we are also working on the system scaling through advanced packaging to increase system bandwidth, to decrease power consumption and device form factors. Our first-generation InFO technology has been qualified. Currently we are qualifying customer InFO products with 16-nanometer technology. And it will be ready for volume ramp next year, 2016. We are now working on our second-generation InFO technology to supplement the silicon scaling of 10-nanometer generation.

On the other side, in addition to the recently announced 55ULP ultra-low power technology, 40ULP, 28ULP technologies for ultra-low power application, such as wearable and IoT, we are also working on 16ULP technology development. This 16ULP design kit will be available in June this year. It will be just suitable for both high-performance and ultra-low power or ultra-low voltage, less than 0.6-volt applications.

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

Good afternoon, ladies and gentlemen. I’ll update you on 28, 20, 16-nanometer status and the InFO business.

First on 28 nanometer. Since year 2011, we started to ramp up 28-nanometer production. Up to now we have enjoyed a big success in terms of a good manufacturing result and, most importantly, the strong demand from our customers. This year we expect the success will continue.

Let me give a little bit more detail, first on the demand side. The demand continues to grow, which are driven by the strong growth of mid- and low-end 4G smartphones, as well as the technology migration from some second-wave segments, such as the radio frequency, hard disk drive, flash controller, connectivity and digital consumers.

Second, on the technology improvement, we continue our effort to enhance 28-nanometer technology by improving the speed performance while reducing the power consumption. 28HPC, 28 ultra-low power technology are some examples.

So to conclude the 28-nanometer status, we believe we can defend our segment share well because of excellent performance and performance/cost ratio and our superior defect density results.

Let’s talk about the 20 SoC business status. After successfully ramp up in high volume last year, we expect to grow 20-nanometer business more than double this year due to high-end mobile device demand, which were generated by our customers’ very competitive products. Our forecast of the 20-nanometer business, as Lora just pointed out, will contribute 20% of the total wafer revenue. That remains unchanged.

Now on 16-nanometer ramp-up. We expect to have more than 50 product tape-outs this year on 16-nanometer. High-volume production will start in third quarter, with meaningful revenue contribution starting in fourth quarter this year. In order to stress again what our Chairman already mentioned, that combining 20 nanometer and 16 nanometer we expect to enjoy overwhelming market segment share.

Last, I will update on the InFO business. The traction on InFO is strong. We have engaged with many customers. And a few of these customers are expected to ramp up in second quarter next year. Right now we are building a small pilot line in a new site to prepare for high-volume production next year. Also we expect this InFO technology will contribute sizeable revenue in 2016.

Dan Heyler – BofA Merrill Lynch – Analyst

…. I guess as we look at your pie chart on your slide with communications and computer being amazingly only 9% of your revenue, and, say, 10 years ago that chart was much, much different, with computer being the biggest. As we look at computer opportunities going forward, I think to some extent there’s maybe a sense of a little bit of disappointment in that we don’t see ARM necessarily in PCs yet. We haven’t really necessarily seen that ecosystem come through in the server business. And big data being such an important trend going forward, with compute growing about 15% per year, I’m wondering what TSMC is doing or what your view of that opportunity will be in the future as a potential growth driver.

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

Server is one of them, Mark. Well there’s IoT actually also, and just don’t forget that mobile actually we think has a few more years to run yet. Really the TSMC silicon content in the average phone is actually increasing, which is something that is not recognized by a lot of people, because everybody says that the weight, the gravity is shifting to the middle level, lower-level priced phones. But according to our data, and we have kept track of it for quite a long time, the average of TSMC silicon content in the average phone is actually increasing.

So — and look, we still look for over — I think the number we have is that by 2019 there’ll be 2b phones manufactured. It is — I think last year it was, what, 1.3b? I think, yes, 1.3b. 1.3b to 2b. And, well, and the average TSMC silicon content per phone is increasing. And the number of phones is going up. So that’s by no means a — it’s still there. It’s still a growth engine.

And then IoT, I think we talked about IoT before, and now we are certainly not oblivious to the server possibility. So why don’t I ask Mark to talk about the server and maybe C.C. will talk a little about the IoT.

Mark Liu – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

Okay, Dan. I’ll just respond to you on the server part. Chairman talked about the area we’re mostly focused on, phone, today. And that would drive — give us growth momentum in the next several years.

On server, we work with the product innovators around the world. And such a field definitely we’ll not lose in our radar screen and theirs. And TSMC has been, over the years, developed our technology to suit for high-power computing.

And from 65, 40, 28 to 16 nanometer, we continuously improve our transistor performance. And today we believe our 16 FinFET Plus transistor performance probably is the top of — is one of the top of the world. It’s well suitable, well capable of doing the computing tasks.

And actually before server, and there are several supercomputers around the world, in US and in Japan, already powered by our technology, doing the weather forecasting, whether the geo exploration applications today. And on the server, on ARM in particular, we have very close partnership with ARM in recent years. And ARM is a very innovative company. They produce CPU core and new architecture every year. And we reached our leading-edge technology very early with ARM and to design their leading-edge CPU cores. And that will continue and several of our customers are taking advantage of that.

Yes, in the past it’s been getting into slower as expected. That’s because the software ecosystem is slower to come. And — but actually a lot of the server companies, system company is continuing investing in this ecosystem. Linux-based ecosystem is coming very strong too. So I think the trend will continue. And we will, with our customers, get into these segments in the next — in the near future. Yes.

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

For the IoT, that would be a big topic right now in the whole industry. All I want to say is that we are happy to share with you that, a long time ago, we already focused on our specialty technology, which are the CMOS image sensor, MEMs, embedded Flash, all those kind of things. Today we add another new technology, ultra-low power, into it. And that will be the basis for the IoT technology necessary in the future. We believe that when the time comes and IoT business becomes big, TSMC will be in a very good position to capture most of the business. That’s what I share with you. Thank you.

Randy Abrams – Credit Suisse – Analyst

… And the follow-up question on profitability. If you could give a flavor on structural profitability for 2015 and some of the flavor for 20, how quick that may get to corporate margins, and for 16, because it’s an extension, whether that could be near corporate margins as that comes up. And if you could give a comment on the inventory at current levels, if there’s any — if that will stay at these higher levels from the WIP you’ve been building or if that may come back down to a different level.

Lora Ho – Taiwan Semiconductor Manufacturing Company Ltd – SVP and CFO

Randy, you have multiple questions. I recall you asked for the structural profitability. That’s you first question, right? From what we can see now, we are quite confident we can maintain equal or slightly better structural profitability, standard gross margin versus 2014.

For the 20-nanometer and 16-nanometer ramping, how would that affect corporate margin? I have said in last July it usually takes seven or eight quarters for any new leading-edge technology to get close to the corporate average. So for 20 nanometer, it will take eight quarters. So we believe — so 20 nanometer start to sell in second quarter 2014, and we expect by first quarter 2016, that’s eight quarters, it will be at corporate average level.

For 16, we are going to mass produce this product. It will follow the similar trend. 16 nanometer will be based on the feature of 20 nanometer, so the margin will start to be higher. But it will also follow the similar trend. It takes seven quarters to reach to corporate average. So say we plan to mass produce 16 FinFET in third quarter 2015, so by first quarter 2017 you will get close to corporate average. So there will — before that there will be still small dilutions. For this year, the dilution will be 2 to 3 percentage points. And the last year, the second half will be 3 to 4 percentage points and very low in 2016.

Donald Lu – Goldman Sachs – Analyst

… Chairman, about six months ago you gave us a comment on your estimate on TSMC’s market share in FinFET in 2015, 2016, 2017. So has that changed?

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

… Donald’s question was I said — actually I looked up my statement at that time, July 16 of last year. I said on the subject of 16 and 20, 16-nanometer and 20-nanometer technology, I said that — I actually made three statements.

The first statement was that because we started 16 a little late, our market share in 2015, our 16-nanometer market share in 2015 will be smaller than our major largest competitor’s.

The second statement I made was that we started 16 late because we wanted to do 20. And so if you combine 20 and 16, our major competitor, who will be slightly ahead of us this year on the 16, he has very little 20. Almost no 20 at all. And if we combine 20 and 16, our combined share in this year will be much higher than that competitor’s.

The third statement I made is that in 2016 we will have much larger share in just 16 nanometer than that competitor.

All right. First I want to say that I, at this time, stand on those statements. In fact, I now will add a couple of statements. The statements I will add are — that’s fourth statement now. Okay? When we have a larger share of just 16 alone in 2016, the 16 market will also be much larger than this year, 2015. So, yes, we’re slightly behind. We have a smaller market share in 2015 in a smaller market. Next year we will have a larger share, in fact much larger share, in a much larger market, 16.

So — and another statement I want to make is that I’m, at this point, very, very comfortable with all those statements that I have made on July 16 last year and the statements that I have added today. I’m very comfortable. I don’t know whether I answered your question or not, Donald.

Donald Lu – Goldman Sachs – Analyst

Yes. How about 2017, if –?

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

What? Well, 2017, the share is going to continue. We’re not going to lose the leadership on 16 market share once we recapture that in 2016. It’s going to continue 2017, 2018. And also both 20 and 16 are going to live longer than you might think now. Well 28, for that matter, will also live longer than you’d think.

Michael Chou – Deutsche Bank – Analyst

… Can we say your 16-nanometer market share in 2016 will be quite similar to your dominance in 28 nanometer, given that your 20 nanometer is the only provider? So the apple-to-apple comparison should be 28 to 16 nanometer.
Elizabeth Sun – Taiwan Semiconductor Manufacturing Company Ltd – Director of Corporate Communications
So market share in 16 nanometer in 2016, will that be the same as our market share at 28 nanometer, I would say, back in 2013, 2014?
Michael Chou – Deutsche Bank – Analyst Yes

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

Well, no, I don’t think so, because 28, of course we were virtually sole source. And 16, we already know we’re not. There’s at least one major competitor and then there’s another one that’s just eager to get in. I don’t mean that first competitor’s accessory, I mean another one.

Brett Simpson – Arete Research – Analyst

My question is around 28 nanometer. You’re running a large capacity at 28 nanometer at the moment. So can you share with us what your capacity plan is for 28? As you migrate more business to 20 nanometer and below over the next couple of years, do you intend to convert 28-nanometer capacity to lower nodes, or do you think you can keep the existing 28-nanometer capacity running full going forward.
Elizabeth Sun – Taiwan Semiconductor Manufacturing Company Ltd – Director of Corporate Communications
All right. Let me repeat Brett’s question so that people here can hear it better. Brett’s question is TSMC’s 28-nanometer capacity is very large. As our technology migrates to more advanced nodes, such as 20 and 16, in the next few years, what will be our plan on capacity of the 28 nanometer? Will we still have large demand to utilize those capacities or we need to do some changes?

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

Every — in every generation we worry a lot about the conversion loss we will suffer when we convert the equipment of that — the existing capacity of that generation to the capacity of the next generation. Now, so we do two things. First, we try to minimize that conversion loss. And since we’ve been living with the problem for so long now, I think we’re getting to be pretty good at it. So the conversion loss from one generation to another is normally in the low single digit, low middle single digit. Now the second thing we try to do is, and I think we actually have been doing it perhaps even more successfully than the first thing. The first thing was to try to minimize the conversion loss. The second thing we try to do is we try to prolong the life of each generation. And I was saying just five minutes ago that I think that the life of 28 nanometer may be longer than a lot of people think. And I mean it. Actually we’re still making half-micron stuff. And we try to prolong the life of every generation as we continue to migrate to advanced technologies. And 28 is certainly a generation that we want to prolong the life of.

Bill Lu – Morgan Stanley – Analyst

My first question is on 28 nanometers. If I look at your capacity this year versus 2014, how much is the increase in capacity?

Morris Chang – Taiwan Semiconductor Manufacturing Company Ltd – Chairman

High teens. High teens actually.

Gokul Hariharan – JPMorgan – Analyst

… First, I had a question on there’s been a lot of controversy about cost per transistor, whether Moore’s law — the economics of Moore’s law are slowing down. Your competitor Intel has put out a very emphatic statement saying that until 7 nanometer they’re seeing that continuing at the same pace as before. But there has been a lot of noise from the fabless community in the last couple of years that at 20 nanometer or at 16 nanometer there is a potential slowdown.

Could we have TSMC’s version now that you’re pretty much ready to start 10 nanometer and thinking already about 7? That’s my first question.
Elizabeth Sun – Taiwan Semiconductor Manufacturing Company Ltd – Director of Corporate Communications
So, all right. Let me repeat. Gokul, your question is mainly on the comments on cost per transistor. Some of the other players, I think you’re referring to Intel, who has made comments that they do see the cost per transistor to continue into 7 nanometer and so they can handle the economics of the Moore’s law. Whereas, on the other hand, fabless companies begin to complain about not seeing enough economics, starting with 20 nanometer. So what is TSMC’s statement regarding this economics issue?

Mark Liu – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

Let me answer this question. The cost of transistor continues to go down. And by scaling mostly is — everybody knows, nobody I think has refused that statement — we see the cost of transistor continues going down in a constant rate. And in going forward, the cost of transistor going down probably at slightly slower rate. That’s the argument. But it really depends on companies. And for some companies simply do not have the technological capabilities. And today, further going down the Moore’s Law technology developments, just a few. And we — as far as whether those costs can — is — can get enough returns, and of course that has to do with how much that technology brings value to the product where they command the price. And today we see certain segments will continue to need that type of system performance to get enough return. So this is the reason we committed to push the system scaling.

Roland Shu – Citigroup – Analyst

Just a 10-nanometer question to C.C. Since, C.C., you said we are expecting to volume production of 10-nanometer in 2017. But I remember in the past two quarters actually our goal was to pulling in 10-nanometer mass production by end of 2016. So are we pushing out the 10-nanometer mass production schedule a little bit on that?

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President and Co-CEO

Let me explain that, because 10 nanometer, the mask layers is about 70 to 80. So you’ve got to start in 2016 to have output in 2017. So what I’m talking about is 2017 is to start to have revenue.

Q3 2014:

Lora Ho – TSMC – SVP & CFO

By technology, after two years of meticulous preparation we began volume shipments of 20-nanometer wafers. The revenue contribution went up from 0% to 9% of the third quarter wafer revenue. This is the fastest and the most successful ramp for a new technology in TSMC’s history.

Mark Liu – TSMC – Co-CEO


On 10-nanometer development, our 10-nanometer development is progressing according to plan. Currently we are working on early customer collaboration for product tape-outs in 4Q of 2015. The risk production date remain targeted at the end of 2015.

Our goal is to enable our customers’ production in 2016. To meet this goal, we are getting our 10-nanometer design ecosystem ready now. We have completed certification of over 35 EDA tools using ARM’s CPU core as the vehicle. In addition, we have started the IP validation process six months earlier than previous nodes with our IP partners.

We are working with over 10 customers on their 10-nanometer product design. The product plans show wide range of applications, including application processors, baseband, CPU, server, graphics, network processor, FPGA and game console. Our 10-nanometer will achieve industry-leading speed, power and gate density.

C.C. Wei – TSMC – Co-CEO


Next, I’ll talk about the 16-nanometer ramp and competitive status. In 16-nanometer, we have two versions, 16 FinFET and the 16 FinFET Plus.

FinFET Plus has better performance and has been adopted by most of our customers. 16 FinFET we began the risk production in November last year and since then have passed all the reliability qual early this year. For the FinFET Plus, we also passed the first stage of the qualification on October 7 and since then entered the risk production. The full qualification, including the technology and product qual, is expected to be completed next month.

So right now we have more than 1,000 engineers working on ramp up for the FinFET Plus. On the yield learning side, the progress is much better than our original plan. This is because the 16-nanometer uses similar process to 20 SOC, except for the transistor. And since 20 SOC has been in mass production with a good yield, our 16 FinFET can leverage the yield learning from 20 SOC and enjoy a good and smooth progress. So we are happy to say that 16-nanometer has achieved the best technology maturity at the same corresponding stage as compared to all TSMC’s previous nodes.

In addition to the process technologies, our 16 FinFET design ecosystem is ready also. It supports 43 EDA tools and greater than 700 process design kits with more than 100 IPs. All these are silicon validated. We believe this is the biggest ecosystem in the industry today.

On the performance side, compared with the 20 SOC, 16 FinFET is greater than 40% speed faster than the 20 SOC at the same total power or consumes less than 50% power at the same speed. So our data shows that in high-speed applications it can run up to 2.3 gigahertz. Or on the other hand, for low-power applications it consumes as low as 75 miniwatts per core.

This kind of a performance will give our customer a lot of flexibility to optimize their design for different market applications. So far we expect to have close to 60 tape-outs by the end of next year.

In summary, because of the excellent progress in yield learning and readiness in manufacturing maturity and also to meet customers’ demand, we plan to pull in 16-nanometer volume production through the end of Q2 next year or early Q3 year 2015. The yield performance and smooth progress of our 16 FinFET, FinFET Plus further validate our strategy of starting 20 SOC first, quickly follow with the 16 FinFET and FinFET Plus. We chose this sequence to maximize our market share in the 20-, 16-nanometer generation.

Next, I’ll talk about 28-nanometer status. We had strong growth in second quarter on 28-nanometer. And the business grew another quarter and accounted for 34% of TSMC’s wafer revenue in third quarter. On the technology side, we continue our effort to improve yield and tighten the process corners, so that our customer can take advantage of these activities and shrink their die size and therefore reduce the cost.

Let me give you an example. On 28LP, the polysilicon gate version, we now offer a variety of enhanced processes to achieve better performance. We also offer a very competitive cost so that our customers can address the mid- to low-end smartphone market. In addition to the 28LP, we also provide a cost-effective high-K metal gate version, the 28HPC for customers to further optimize the performance and the cost. Recently, we added another 28-nanometer offering we called 28 Ultra Low Power, for ultra low power applications obviously. We believe this 28ULP will help TSMC customers to expand their business into the IoT area.

In summary, we expect our technology span in 28-nanometer node will enhance TSMC’s competitiveness and ensure a good market share. We also expect the strength of the demand for our 28-nanometer will continue for multi years to come. In response, we are preparing sufficient capacities to meet our customers’ future demand.

Q2 2014:


Morris Chang – TSMC – Chairman

Now a few words on 20-nanometer and 16-nanometer progress. In the last two and half to three years, 28-nanometer technology has driven our growth. In the next three years, 20 and 16-nanometer technologies are going to drive our growth; 28 in the last two and half to three, 20 and 16 in the next three.

After two years of meticulous preparation, we began volume shipments of our 20-nanometer wafers in June. The steepness of our 20-nanometer ramp sets a record. We expect 20-nanometer to generate about 10% of our wafer revenue in the third quarter and more than 20% of our wafer revenue in the fourth quarter. And we expect the demand for 20-nanometer will remain strong and will continue to contribute more than 20% of our wafer revenue in 2015. It will reach 20% of our total wafer revenue in the fourth quarter of this year and it will be above 20% of our total wafer revenue next year.

The 16-nanometer development leverages off 20-SoC learning and is moving forward smoothly. Our 16-nanometer is more than competitive, combining performance, density and yields considerations. 16-nanometer applications cover a wide range including baseband, application processors, consumer SoCs, GPU, network processors, hard disk drive, FPGA, servers and CPUs. Volume production of 16-nanometer is expected to begin in late 2015 and there will be a fast ramp up in 2016. The ecosystem for 16-nanometer designs is current and ready.

A few years ago, in order to take advantage of special market opportunities, we chose to develop 20-SoC first and then quickly follow with 16-nanometer. We chose this sequence to maximize our market share in the 20/16-nanometer generation. As the 20/16 foundry competition unfolds, we believe our decision to have been correct.

Number one, in 20-SoC, we believe we will enjoy overwhelmingly large share in 2014, 2015 and onwards.

Number two, in 16-nanometer, TSMC will have a smaller market share than a major competitor in 2015. But we’ll regain leading share in 2016, 2017 and onwards.

Number three, if you look at the combined 20 and 16 technologies, TSMC will have an overwhelming leading share every year from 2014 on.

Number four, in total foundry market share, after having jumped 4 percentage points in 2013, TSMC will again gain several percentage points in 2014. This is the total foundry market share covering all technologies. After having increased 4 percentage points last year, TSMC will gain another several percentage points this year.

Now a few words about 10-nanometer. The 10-nanometer development is progressing well. The 10-nanometer speed is 25% faster than the 16-nanometer. The power consumption is 45% less than 16-nanometer and the gate density is 2.2x that of the 16-nanometer. Power is 25% faster. Did I say power? I meant speed. Speed is 25% faster, power is 45% less, gate density 2.2 times more, all compared with 16-nanometer.

We work closely with our key customers to co-optimize our 10-nanometer process and design. We expect to have customer tape outs in the second half of 2015.

William Dong – UBS – Analyst

Good afternoon Mr. Chairman. I guess — we keep talking about technology. I guess the question I want to ask is that with all this rush to continue to push down technology roadmap, to go down to 16, to 14 and to 10 nanometer, what are our thoughts about what’s driving this demand? As we move toward, for example, Internet of Things, is there such a requirement to keep pushing on the technology front to actually have enough, sufficient demand to keep driving it down?

Morris Chang – TSMC – Chairman

Well, if the cost is low enough — cost is very much a part of the equation. If the cost is low enough, the demand will increase because we can see a lot of applications that are just waiting there. Of course I’m talking about the mobile products, but I’m also talking about Internet of Things, so wearables and so on, so on, Internet of Things. The applications are just waiting there for better, for faster speed and lower power and higher density ICs. Cost is definitely in the equation.

So, yes, when you ask will the demand be there. If we can get the cost down to an acceptable level, demand will be there. And of course that’s why — that’s how things like EUV come into the question. Nobody has asked about that yet. We actually were prepared to answer that with the same answer that we gave you last time, by the way, that we are still planning to — there’s still a possibility to use EUV on one, one or two — or just one layer in the 10 nanometer, yes. One layer, one layer in 10 nanometer and 7 I think is, of course, an even better candidate.

Dan Heyler – BofA-Merrill Lynch – Analyst

Hopefully this question simplifies and doesn’t complicate things. Just to make sure I understand this share loss thing, so basically what you’re saying is the share loss at 16, these are customers that are choosing to skip 20? Is that how should I think of this that these are not any — are any of these customers that are currently 20 that are going to 16 next year or is this all people that are choosing to skip 20?

Morris Chang – TSMC – Chairman

Well, first of all, I want to question the word share loss. I don’t consider there is share loss because just like 32/28 we had zero share in 32. But then we were very successful in 28. The two really belong to the same generation. And 20 and 16 also belong to the same generation. So, yes — and share loss means that you start with something and then you lose it, it becomes less. Well, this year nobody has — everybody has zero share, okay. And I am just saying that we will start on 16, we will start with a lower share than we did with 20 or 28. We start with a lower share than we did with 20 or 28. And then we’ll get back to a high share in 2016. I’m just arguing with him, but he did have a question; what was that?

Dan Heyler – BofA-Merrill Lynch – Analyst

Or just simply are your — are these customers moving to 16, are these the ones that have currently been on 20 or are these the guys that have skipped because the debate in the industry is should we go straight to 16 and skip 20. So are these customers that have basically been at 28 and are skipping 20 and going straight to 14 at your competitor?

Morris Chang – TSMC – Chairman

Mainly because our customers wanted it sooner. We got in a little late, as I said; our customers wanted it sooner. So that’s why we’re starting — and we’ll catch up only a little later.

Michael Chou – Deutsche Bank – Analyst

Chairman, regarding the 16/20 nanometer, could we say your total market share in 16 and 20 nanometer will be similar to 28/32 for the corresponding period? Can we say that?


Morris Chang – TSMC – Chairman

The combined 20 — I just ran an analysis just a couple of weeks ago, so I know exactly the answer to your question. The combined 20/16 market share in the first two years of its existence, which is this year and next year — well, I guess I have to add in 2016 — the combined — our combined 20/16 share in 2014, 2015 and 2016 will still be greater than our combined share of 32 and 28 in 2012, 2013 and 2014.

Q1 2014:


Mark Liu – Taiwan Semiconductor Manufacturing Company Ltd – President & Co-CEO

Then I cover the updates on 16 FinFET, 16 FinFET plus and our 10 FinFET. First, we have two general offers for customers, 16 FinFET and 16 FinFET plus. 16 FinFET plus offers 15% speed improvement, the same total power, compared to 16 FinFET. More importantly, 16 FinFET plus offers 30% total power reduction at the same speed, compared to 16 FinFET.

Our 16 FinFET plusmatches the highest performance among all available 16-nanometer and 14-nanometer technologies in the market today. Compared to our own 20 SoC, 16 FinFET plus offers 40% speed improvement. The design rules of 16 FinFET and 16 FinFET plus are the same; IPs are compatible.

We will receive our first customer product tapeout this month. About 15 products planned for 2014, another about 45 in 2015. Volume production is planned in 2015. Since 95% tools of 16 and 20 are common, we will ramp them in the same gigafabs in TSMC. 16 FinFET yield learning curve is very steep today and has already caught up with 20 SoC. This is a unique advantage in TSMC 16-nanometer.

For 10 FinFET, 10 FinFET offer TSMC’s third generation FinFET transistor, designed to meet the power and the performance requirement of mobile computing devices. 10 FinFET will offer greater than 25% speed improvement, the same total power, compared to 16 FinFET plus. More importantly, 10 FinFET offer greater than 45% total power reduction at the same speed, compared to 16 FinFET plus.

10 FinFET will offer 2.2X of density improvement over its previous generation, 16 FinFET plus. So, currently, 10 FinFET development progress is well on track, but risk production will be in 4Q 2015. Above are the key messages on three items.

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President & Co-CEO

…  I would like to take this opportunity to share with you the two topics with you; namely, the 20 SoC ramp and TSMC’s advance assembly solution to our customer. First, I will brief you on the status of 20 SoC ramp.

Let me recap what we had said in the last meeting here. We started 20 SoC production in January this year and by fourth quarter of this year, the 20 SoC will account for 20% of the quarterly revenue — wafer revenue. And for the whole year of 2014 we expect 20 SoC will be about 10% of our total wafer revenue of the year of 2014, of course. All these expectations remain the same today.

Now, there are some major achievement I would like to share with you. First, on the ramping speed. 20 SoC by far is the fastest ramping in TSMC’s history. Of course, this fast ramp is to meet customers’ strong demand. And I believe this production of 20 SoC in TSMC represents one of the largest mobilization in semiconductor history. Let me share with some numbers, so you can have a snapshot on this ramp.

In about one year’s time we have built a manufacturing team of 4,600 engineers and 2,000 operators in two fabs; Fab 14 in Tainan and Fab 12 in Hsinchu. More impressively, in the same time period, close to one thousand engineer has been relocated among TSMC’s fabs in Hsinchu, Taichung and Tainan. All these are prepared for the 20 SoC’s ramp-up. This magnitude of mobilization, I believe, is not an easy job. We move people around that show our strength in manufacturing and this highly mobilization is not moving the tool or just a handful around. We’re talking about we’re moving the engineer and operator among TSMC’s fabs. In the meanwhile, we have installed more than 1,500 major tools for this 20 SoC ramp.

Of course, the faster ramp has done with a very good device reliability and a very good wafer defect density. Without those, the fast ramp will make no sense. Now how important are these 20 SoC ramp? Well we knew that 28 nanometer provided the engine of TSMC’s profitable growth in the years of 2012 and 2013 and similarly, we expect 20 SoC will provide the engine of TSMC’s profitable growth in year 2014 and 2015.

Now let me switch gear to advanced assembly technologies. The purpose of — for us to develop advanced assembly technology is to provide our customer a better performance and a lower power consumption, while at a lower cost as compared to the previous assembly solution. For example, we have developed CoWoS and CoWoS has been developed to connect two dies or more dies together to have a very high performance and a very low power consumption and today CoWoS is in a small volume production already. However, the cost structure of CoWoS has made CoWoS only suitable for some very high performance applications and the products. To address the cost structure issue and for those mobile — very large volume mobile devices, we have developed a derivative technology called InFO; that stands for integrated fan-out.

InFO will have significant lower cost as compared to CoWoS and at the same time, InFO also can have the same capability to connect multiple dies together just as the CoWoS did. Currently, we’re working with major customers and the InFO, to incorporate this structure into their future product. We have delivered many functional dies to our customers already and the process optimization are ongoing.

In fact, we are very excited about TSMC’s advanced assembly technology development as we’re building a innovative solution for our customers product, which requires high performance, lower power consumption and at a very reasonable cost structure.

Michael Chou – Deutsche Bank – Analyst

I don’t know, C.C. Wei, could you give us more color on the advanced packaging you just mentioned. What’s the difference between this one and CoWoS?

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President & Co-CEO

The difference between the InFO and the CoWoS is actually the geometry to connect multi-dies together. In the CoWoS, actually we are using very small geometry, actually 65 nanometers of geometry to connect the multi-dies together. In InFO, we’re using the larger geometry, which are still technical confidential information. But the cost is much, much lower.

Brett Samson – Arete Research – Analyst

Just had a quick question. Can you give us a sense within the 28 nanometer nodes, how does that split between poly-SiON and high-K and how do you think this might trend through this year?
Elizabeth Sun – Taiwan Semiconductor Manufacturing Company Ltd – Director, Corporate Communications
So Brett’s question is what is really the mix between poly-SiON, that is our 28 LP, versus our high-k metal gate and what is going to be the trend with respect to that kind of mix throughout this year?

Mark Liu – Taiwan Semiconductor Manufacturing Company Ltd – President & Co-CEO

Allow me to answer that. Our 28 nanometer high-k metal gate has three options, 28HP, 28HPM and 28HPC. And this year these 28 high-k metal gate technology will be about 85% of the overall 28 nanometer in terms of the wafer.

Dan Heyler – Bank of America Merrill Lynch – Analyst

… I want to follow up on this InFO, this is quite interesting. Could you just maybe elaborate a bit more on what exactly are you going to be attaching, so which devices are we talking about in terms of what – with CoWoS it was pretty much PLD [Programmable Logic Devices, like Altera] companies were there and others, some baseband. So what devices are you attaching on the initial generation between the different chips? And second part of that question would be what kind of — how many customers do you expect to manage to have in this area, because you start peddling lots of devices and lots of customers it gets really complicated, you start to look more like an OSAT [Outsourced Semiconductor Assembly and Test]. So I wonder if this is going to be a pretty small group of high volume products? And finally on — as you attach — are you actually doing a chip attach or will you be doing only the wafer level activity and will you be having — working with the OSATs to do the actual chip attach?

C.C. Wei – Taiwan Semiconductor Manufacturing Company Ltd – President & Co-CEO

Dan, to answer your question, the InFO actually we’re right now working on application processor together with memory dies. That’s good enough for you. I cannot say anything more than that. We’re working with mobile product customers and we did not — we expect very high volume, but we did not with many, many customers as current status. We’re working on the wafer level process, stacking die, and couple of them, we’re able to do the complete line all here.

Q4 2013:


Morris Chang – Taiwan Semiconductor Manufacturing Co., Ltd. – Chairman

Good afternoon, ladies and gentlemen. Today, our comments are scheduled as on the slide on your left. First, I’m very glad to have the opportunity to introduce our new top management team.

I’d first start with Lora, although I think everyone knows Lora well. Lora has a bachelor’s degree from Chengchi University, a master’s degree from National Taiwan University, both degrees in finance. She worked for Cyanamid, Wyse, Thomas & Betts and TI-Acer before she joined TSMC in 1999. And she has been TSMC’s CFO since 2003.

Next, Dr. C. C. Wei. C. C. has a bachelor’s degree from Chiao Tung University and a Ph. D. from Yale University, both in electrical engineering. C. C. worked for TI, SGS, Chartered before joining TSMC in 1998. C. C. has been Senior VP of Operations, Senior VP of Business Development, Co-COO, and in the Co-COO job CC was successively responsible for R&D and Operations. Now C.C. is President and Co-CEO.

C.C. is 60 years old and I should add that Lora is 57 years old.

Mark Liu; Mark has a B.S. from National Taiwan University and a Ph. D. from Berkeley, both in electrical engineering and computer science. Mark worked for Intel, Bell Telephone Labs before joining TSMC in 1993. And at TSMC he has been VP, Senior VP of Operations and he was also a Co-COO, and all the time he was Co-COO he was responsible for our sales, marketing and planning.

And now Mark and C.C. are Presidents and Co-CEOs of the Company. Mark is 59 years old.

C.C. Wei – Taiwan Semiconductor Manufacturing Co., Ltd. – President & Co-CEO
[about the technology aspects of TSMC’s growth engine]

Good afternoon everybody. I am C.C. Wei and I will give you the update of our 28-nanometer high-K metal gate version. Let me recap the history. We started 28-nanometers volume production in year 2011 mainly on the 28LP, the oxynitride version. And since then the business continued to grow. So last year, we had tripled 28-nanometers of business versus year 2012. That in this year, year 2014, the business for 28-nanometer will continue to grow at least by another 20%, and all the increase are coming from the 28-nanometers high-K metal gate version, which is we name it 28HPM.

Let me add more color to it. We expect we’re going to have about more than 100 tape-outs from about 60 customers in this year in 28HPM. Now you may ask it why? Why there are so many products that were designed on this technology? One of the main reason I can give it to you is the performance, the superior performance. For example, 28 HPM compare with the 28LP that will gain another 30% of the speed at the same kind of power consumption, or you can say that at the same power consumption — at the same speed, you will consume 15% less power. And everybody knows that the power consumption in the mobile device is very important. That’s why we think we have a very high, good business on the 28 HPM.

Now, furthermore, after the 28HPM, we also offer 28HPC, which is a low-cost version of the 28HPM. The 28HPC is developed to meet the customers’ demand to compete in the mid-to-low-end smartphone market. We expect that this 28HPC will have a very strong demand in the next two years. That’s what we have.

Okay, let me give you some information on the competition to explain why we are so confident on this 28 nanometers high-K metal gate business. If you still remember that long time ago, we mentioned about gate-first and gate-last. Still remember that terminology? All right. So, simply to say that gate-last version will give you better performance and a better process control. As a result, all our customers will enjoy using the gate-last versions that technology to have a higher or better performance than other products which are designed with a different approach.

In addition to that I’ll say that because of the better process control and TSMC’s manufacturing excellence, we have a much better yield than our competitor, so that our customer will enjoy the lower die cost. That’s what we have. And that’s why we explained that our confidence that the 28 nanometers business continue a very good business for us.

Now, let me switch the gear to 20-SoC. That’s another exciting news that we have, I want to share with you. 20-SoC is a technology that we developed to enable TSMC’s customer to lead in the mobile device market. And this technology we are believe in this year, next year, well I have a very good business to capture. So, what is the status now of the 20-SoC? We have two fab, Fab 12 and Fab 14 that complete the qual of 20-SoC. And as a matter of fact, we started production. We are in volume production as we speak right now. So, it’s in the high-volume production as we are speaking right now.

Let me add more information to that. First, there are more than $10 billion had been committed to build capacity. Second, we have more than 2,500 engineers and 1,500 operators right now in manufacturing, doing the 20SoC volume production. The ramping rate will be the fastest one in TSMC’s history. Using the ramping rate, you can get the hint of the business, how big the business is.

Another fact to share with you, we have probably — at the end of this year, we have more than dozens of tape-out from about a dozen customers that they are producing the 20SoC product, okay? You may ask, good business, how about the competition? If you have a very strong competition, you might — cannot have too much of confidence on the future. Let me talk about the competition.

I’m very confident that our 20SoC is the highest gate density in volume production at 20 nanometers node. And please remember that; highest gate density and a high volume production. I don’t see any company today can claim on this kind of production and with this kind of gate density at this time, nobody. And most of our competitors, to be frank with you, they’re not even into this game yet. So we are confident to have a good business that will contribute to TSMC’s revenue — wafer revenue by probably around 10% this year. And with that I conclude my presentation and thank you for your attendance.

Mark Liu – Taiwan Semiconductor Manufacturing Co., Ltd. – President & Co-CEO
[about TSMC’s competitiveness versus Intel and Samsung]

I will start this topic by update you our recent development status of our 16-FinFET technology. 16-FinFET technology has been a very fast paced development work in TSMC and we have achieved the risk production milestone of 16-FinFET in November 2013, November last year. And this month, we should pass the 1,000 hours so-called the technology qualification. So the technology is ready for customer product tape-out.

Our 16-FinFET yield improvement has been ahead of our plan. This is because we have been leveraging the yield learning of 20SoC. Currently 16-FinFET SRAM yield is already close to 20SoC. And with this status we are developing an enhanced transistor version of 16-FinFET plus, with 15% performance improvement. It will be the highest performance technology among all available 16 and 14 nanometer technology in 2014. The above progress status is well ahead of Samsung.

Let me comment on the Intel’s recent graph shown in their investor meetings, showing on the screen. We usually do not comment on other company’s’ technology, but this is — because this has been talking about TSMC technology and as Chairman said, has been misleading. To me it’s erroneous, based on outdated data. So I like to make the following rebuttal.

futureICT - 2013--Intel Is Committed to Press Ahead on Density - Enables a 'Transistor Like' Lead in Density

2013: Intel Is Committed to Press Ahead on Density – Enables a “Transistor Like” Lead in Density

futureICT - Jan-2014--Density Comparison by TSMC vs Intel 2013 statement

January 14, 2014: Density Comparison by TSMC vs. Intel’s 2013 statement at its Investor Meeting

On this view graph, the vertical axis is the chip area on a log scale. Basically this is compared at chip area reduction. On the horizontal axis, it shows four different technologies; 32/28, 22/20, 14/16-FinFET and 10-nanometer. 32 is Intel technology and 28 is TSMC technology. So is the following three nodes; the smaller number 20, but on 14-FinFET is Intel, 16-FinFET is the TSMC. On the view graph shown at Intel investor meeting, it is with the grey plots showing here. The grey plots shows the 32 and 20 nanometer, TSMC is ahead of the area scaling, but however, with 16, the data, grey data shows a little bit uptick. And following the same slope, go down to the 10 nanometer. What’s the correct data we show on the red line, that’s our current TSMC data. The 16, we have been volume production on 20 nanometer, as C.C. just mentioned, this is the highest density technology in production today.

We took the approach of significantly using the FinFET transistor to improve the transistor performance on top of the similar back-end technology of our 20 nanometer. Therefore, we leveraged the volume experience into volume production this year, to be able to immediately go down to 16 volume production next year, within one year. And this transistor performance and innovative layout methodology can improve the chip size by about 15%. This is because the driving of the transistor is much stronger, so that you don’t need such a big area to deliver the same driving circuitries.

And for the 10 nanometer, we haven’t announced it, but we did communicate with many of our customers that that will be the aggressive scaling of technology we’re doing. And so, in the summary, our 10 FinFET technology will be qualified by the end of 2015. 10 FinFET transistor will be our third generation FinFET transistor. This technology will come with industry’s leading performance and density. So, I want to leave this slide by 16 FinFET scaling is much better than Intel said, but still a little bit behind Intel.

However, the real competition is between our customer’s product and Intel’s product or Samsung’s product. TSMC’s Grand Alliance; that is the alliance of us, our customers, EDA, IP, communities and our supplier is the largest and the only open technology platform for the widest range of product innovations in the industry today. As for the tape-out of our 16 FinFET, more than 20 customer product tape-outs on 16 FinFET technology is scheduled this year already. They include wide range of applications; baseband, application processors, application processor SoCs, graphics, networking, hard disk drive, field programmable array, CPUs and servers. Our 16 FinFET technology captured the vast portion of products in the semiconductor industry.

We’ve been actively working with our customer’s designer on this since last year. TSMC’s speed and productization of the customer’s product and our ability to execute for a short time-to-market for a customer are far superior than Intel and Samsung.

Lastly, I would comment on the mobile products. With this 16 FinFET technology and the innovations of processor architecture and various IP from our customers, we are confident that this planned, 16 FinFET mobile product, which is going to tape out to us, will be better than Samsung’s 14 nanometer and better than Intel’s 14 SoC. Thank you very much.

Roland Shu – Citigroup Global Markets – Analyst

… Is the 16-plus is improving from the design you were saying or this is just for the performance enhancement or are we going to consider to change our 16-plus to — even to the — same as the 14-nanometer? …

Mark Liu – Taiwan Semiconductor Manufacturing Co., Ltd. – President & Co-CEO

16 FinFET-plus is a transistor enhancement. For the design — back-end design rule are similar to 16 FinFET, therefore designer can design on 16 FinFET and re-characterize, upgrade their product performance. This transistor, as I mentioned, also can reduce the cell size, standard cell size, and with the enhanced performance transistor. That’s the way to reduce the chip size. So we do not intend to change the naming. I mean this is engineering, this is the word — this is the name that we chose earlier based on the physical consistent number and we do not intend to change name.

Randy Abrams – Credit Suisse – Analyst

My first question on the management structure now with the Co-COOs promoted to Co-CEOs. If you could talk about how the responsibilities would change with their promotion to Co-CEO? And for yourself, Dr. Chairman, how will your activities change versus before this move? So if you could talk about the roles for each of the different Co-CEOs and yourself now.

Morris Chang – Taiwan Semiconductor Manufacturing Co., Ltd. – Chairman

We started with President and the Co-CEO in November, and it has been now two months. And if you ask me now, has my life changed in the last two months? My answer is no. It has not changed. But I think that my effort, my time has been spent more on the coaching aspects. I think that — I do believe that I do more coaching. If I spend 100 hours and — I now perhaps spend 20 hours of the 100 hours on coaching, whereas in the past, I’d probably spend only 5 or 10 hours of the 100 hours on coaching.

Now, actually, this is an overseas call, is this correct? Yes. So let me just explain very briefly what the Taiwan law and customs are in relation to a Chairman’s authority and responsibility. Basically, by both law and custom, the Chairman of a company has the ultimate authority and responsibility, basically. However, he may delegate his authority and responsibility to the President. He may also take it back anytime. He can delegate any and all, any or all of the responsibilities to the President. And now these two gentlemen, their titles is President and co-CEO. President comes first. They are, in a very legal sense, Presidents. Now the co-CEO is basically a Western term. And then in the United States, a CEO usually bears the final ultimate responsibility and authority as a Chairman in Taiwan does. In the US, it’s the CEO. Now — so my role in the future is really to convert these two gentlemen from the Taiwan sense President to the US sense CEO, and it will be a gradual process.

Donald Lu – Goldman Sachs – Analyst So Chairman, (spoken in foreign language).

First question is, I want to ask the Chairman, how would you — are you satisfied with the transition so far and also, how the two Presidents would share their work? Are they still rotating or not? And (multiple speakers) but probably not now. And maybe give us some details about how the Company is run. And I have a follow-up question on competition.

Morris Chang – Taiwan Semiconductor Manufacturing Co., Ltd. – Chairman

All right. I am quite satisfied with the transition. And these two gentlemen; Mark is now responsible for sales, marketing, strategic planning, business development, and yes, information technology and materials management, all those. And C.C. is responsible for operations, all the operations, and he is also responsible for specialty technology R&D. Specialty technology incidentally accounts for 25% of our total business. So now, Donald, your other question is whether they’re going to rotate. My plan currently is, I don’t plan it that way, I don’t plan it that way right now. However, I deem it’s a pretty flexible thing. Tomorrow, I may take one part of Mark’s and give it to C.C. or vice versa. But I’m not considering rotation, per se. Yes, does that answer your first question?

Donald Lu – Goldman Sachs – Analyst

… Okay, since we are already doing it, why don’t you give us more color? 16-nanometer, for example, are we saying that in terms of die size, performance, our product will be very similar to Intel’s 40-nanometer FinFET? And also, Mark commented that for the FinFET tape-outs, specifically there’s a CPU and server chips, and can we say that TSMC’s CPU and server chips will have the similar physical performance as Intel’s products today?

Morris Chang – Taiwan Semiconductor Manufacturing Co., Ltd. – Chairman

Well, I think, Donald, we have already given everybody enough information on our 16-FinFET. I think that if we keep giving more, we would be helping our competitors who have picked on us. And so, now, we do stand on what we said. We are going to — our Grand Alliance will out-compete Intel and Samsung. Our Grand Alliance on the 16-FinFET will out-compete. By that I don’t mean that we’ll completely exclude them, no, no, no. We can’t do it. We won’t be able to do that. But our Grand Alliance, with us as foundry supplier, will capture a large share of the 16-nanometer. You agree with that don’t you?

Mark Liu – Taiwan Semiconductor Manufacturing Co., Ltd. – President & Co-CEO

The fabless companies in China are very aggressive approaching leading-edge technologies. To tell you, our 16-FinFET this year, already some of the fabless companies will be using it in tape-outs. So, I think all those fabless companies’ subsidy will propel them into the leading-edge technology more.

July 20, 2013: TSMC takes on rivals with Grand Alliance strategy, says Chang [Global Data Point] by TMC News

(Global Data Point Via Acquire Media NewsEdge) Taiwan Semiconductor Manufacturing Company (TSMC) chairman and CEO Morris Chang, at a July 18 investors conference, talked about the importance of the foundry’s close ties with customers and ecosystem partners, and described how TSMC has formed a “Grand Alliance” with EDA, IP, software IP, systems software and design services providers.

TSMC has been competitive against fellow pure-play foundries, said Chang. In the face of rising competition from IDMs, TSMC with its ability to deliver cutting-edge technologies and advanced manufacturing capacity is also able to outshine the rivals, Chang indicated.

With the industry moving towards sub-20nm technologies, Chang believes that TSMC will become more capable of fending off rivals like Samsung Electronics and Intel. “Now in this new era of competition, the competition is not between foundries. It is not between foundries and IDMs. It is between ‘Grand Alliances’ and IDMs,” Chang pointed out.

Chang named ARM, Imagination, Cadence and Mentor as some of TSMC’s IP and EDA partners.

TSMC’s so-called “Grand Alliance” seems like an expansion of its Open Innovation Platform (OIP), which was announced in 2008. TSMC’s OIP is a business strategy aiming to provide integrated services from design to manufacturing to testing and packaging. According to TSMC, the platform is to bring together the thinking of customers and partners under the common goal of shortening design time, minimizing time-to-volume and speeding time-to-market.

In addition, Chang noted that TSMC’s 28nm process technology is on track to triple in wafer sales in 2013. TSMC made 29% of its NT$155.89 billion (US$5.18 billion) revenues from selling 28nm chips in the second quarter of 2013.

Chang also reiterated TSMC’s plans that 20nm technology will begin volume production in early 2014, followed by volume production of 16nm FinFETs within one year.

2014 H1 changes on the Worldwide Tablet market

Versus as it was presented in The lost U.S. grip on the mobile computing market, including not only the device business, but software development and patterns of use in general [this same blog, April 14, 2014]:

imageSource: The Tablet Market Ticks Up In The Second Quarter
With White Box Shipments Leading The Way [Business Insider, July 25, 2014]

      • The global tablet market ticked up in the second quarter of 2014, although growth is still near the market’s historical low.
  • Shipments hit about 44.3 million during the period, yielding year-over-year growth of 11%.

While an improvement from the previous quarter, consider that the tablet market had year-over-year growth of nearly 80% in the same quarter just a year ago.

    • Although it lead all vendors with about 27% market share, Apple’s iPad shipments declined 9% year-over-year during the period. That marks the second consecutive quarter in which iPad shipments have declined.
    • Samsung’s tablet shipments grew a paltry 1% for the period to hit 8.5 million units in the second quarter. That is an enormous slowdown compared to the growth rates it was achieving just a year ago. In the second quarter of 2013, Samsung tablet shipments grew 300% year-over-year.
    • Both Apple and Samsung lost market share during the quarter. Apple’s leading market share fell from 33% to 27% while Samsung’s dipped two percentage points to 17%.
    • “White-box” vendors = 41% of market

    image

    image

    Worldwide Tablet Market Grows 11% in Second Quarter on Shipments from a Wide Range of Vendors, According to IDC [IDC press release, July 24, 2014]

    The worldwide tablet grew 11.0% year over year in the second quarter of 2014 (2Q14) with shipments reaching 49.3 million units according to preliminary data from the International Data Corporation (IDC) Worldwide Quarterly Tablet Tracker. Although shipments declined sequentially from 1Q14 by -1.5%, IDC believes the market will experience positive but slower growth in 2014 compared to the previous year.
    “As we indicated last quarter, the market is still being impacted by the rise of large-screen smartphones and longer than anticipated ownership cycles,” said Jean Philippe Bouchard, IDC Research Director for Tablets. “We can also attribute the market deceleration to slow commercial adoption of tablets. Despite this trend, we believe that stronger commercial demand for tablets in the second half of 2014 will help the market grow and that we will see more enterprise-specific offerings, as illustrated by the Apple and IBM partnership, come to market.”
    Despite declining shipments of its iPad product line, Apple managed to maintain its lead in the worldwide tablet market, shipping 13.3 million units in the second quarter. Following a strong first quarter, Samsung struggled to maintain its momentum and saw its market share slip to 17.2% in the second quarter.  Lenovo continued to climb the rankings ladder, surpassing ASUS and moving into the third spot in the tablet market, shipping 2.4 million units and grabbing 4.9% markets share. The top 5 was rounded out by ASUS and Acer, with 4.6% and 2.0% share, respectively. Share outside the top 5 grew to an all time high as more and more vendors have made inroads in the tablet space. By now most traditional PC and phone vendors have at least one tablet model in the market, and strategies to move bundled devices and promotional offerings have slowly gained momentum.
    “Until recently, Apple, and to a lesser extent Samsung, have been sitting at the top of the market, minimally impacted by the progress from competitors,” said Jitesh Ubrani, Research Analyst, Worldwide Quarterly Tablet Tracker. “Now we are seeing growth amongst the smaller vendors and a levelling of shares across more vendors as the market enters a new phase.”

    Worldwide Tablet Shipments Miss Targets as First Quarter Experiences Single-Digit Growth, According to IDC [IDC press release, May 1, 2014]

    Worldwide tablet plus 2-in-1 shipments slipped to 50.4 million units in the first calendar quarter of 2014 (1Q14) according to preliminary data from the International Data Corporation (IDC) Worldwide Quarterly Tablet Tracker. The total represents a sequential decline of -35.7% from the high-volume holiday quarter and just 3.9% growth over the same period a year ago. The slowdown was felt across operating systems and screen sizes and likely points to an even more challenging year ahead for the category.
    “The rise of large-screen phones and consumers who are holding on to their existing tablets for ever longer periods of time were both contributing factors to a weaker-than-anticipated quarter for tablets and 2-in-1s,” said Tom Mainelli, IDC Program Vice President, Devices and Displays. “In addition, commercial growth has not been robust enough to offset the slowing of consumer shipments.”
    Apple maintained its lead in the worldwide tablet plus 2-in-1 market, shipping 16.4 million units. That’s down from 26.0 million units in the previous quarter and well below its total of 19.5 million units in the first quarter of 2013. Despite the contraction, the company saw its share of the market slip only modestly to 32.5%, down from the previous quarter’s share of 33.2%. Samsung once again grew its worldwide share, increasing from 17.2% last quarter to 22.3% this quarter. Samsung continues to work aggressively with carriers to drive tablet shipments through attractively priced smartphone bundles. Rounding out the top five were ASUS (5%), Lenovo (4.1%), and Amazon (1.9%).
    With roughly two-thirds share, Android continues to dominate the market,” said Jitesh Ubrani, Research Analyst, Worldwide Quarterly Tablet Tracker. “Although its share of the market remains small, Windows devices continue to gain traction thanks to sleeper hits like the Asus T100, whose low cost and 2-in-1 form factor appeal to those looking for something that’s ‘good enough’.”

    Digitimes Research: Global tablet shipments reach 55.06 million units in 2Q14 [press release, July 23, 2014]

    There were 55.06 million tablets shipped globally in the second quarter of 2014, decreasing 4.5% on quarter but increasing 17.9% on year, according to Digitimes Research.
    The shipments consisted of 14.1 million iPads, down 10% on quarter, and 18.96 million units launched by vendors other than Apple, down 12.7% on quarter. Additionaly, 22.3 million white-box units were shipped in the second quarter.
    Shipments of small-size Wi-Fi-enabled units in particular slowed down in the second quarter and the time period was also a slow season for shipments. Supply chains also faced yield issues and Samsung saw less-than-expected shipments for its 8-inch tablets. Tablets sized 10-inch and above have seen shipment increases since fourth-quarter 2014.
    Taiwan tablet makers meanwhile surpassed 20 million in shipments for brand tablets during the second quarter, which made up 60% of overall brand tablet shipments during the time period, added Digitimes Research.

    Digitimes Research: Global tablet shipments drop 30% sequentially in 1Q14 [press release, April 23, 2014]

    Global tablet shipments reached only 58.56 million units in the first quarter of 2014, down almost 30% sequentially, but up 4.6% on year despite Samsung Electronics trying to boost both its high-end and entry-level tablet shipments and Lenovo pushing shipments to meet its fiscal 2013 targets. Seasonality, Apple seeing weaker sales, and the tablet market growing mature were also factors that affected shipment performance, according to Digitimes Research.
    Shipments of iPads suffered both on-year and sequential drops to reach 15.85 million units in the first quarter. Non-iPad tablet shipments were 22.31 million units, down 20% sequentially, but up over 30% on year thanks to strong demand for Samsung, Lenovo and Asustek’s Windows-based models. White-box tablet shipments reached only 20.4 million units due to seasonality and labor shortages during the Lunar New Year holidays.
    Apple and Samsung remained the top-two vendors in the first quarter, but the two players’ market share gap was less than 6pp. Lenovo was the third-largest vendor, followed closely by Asustek Computer in fourth. Amazon and Google dropped to number seven and ten.
    Taiwan ODMs shipped 22.15 million tablets together in the first quarter, accounting for less than 60% of global shipments. The largest maker, Foxconn Electronics (Hon Hai Precision Industry), and second-largest Pegatron Technology both suffered significant shipment drops due to lower-than-expected demand for iPad. Quanta saw increased shipments in the quarter because of Asustek’s T100 tablet, and returned to being the third-largest maker in Taiwan. Compal Electronics’ shipments suffered a sharp decline because Amazon’s Kindle Fire range is approaching the end of its lifecycle, while Acer is turning to cooperate with China-based makers, Digitimes Research‘s figures showed.

    Digitimes Research: Global white-box tablet shipments down in 1Q14 [press release, May 12, 2014]

    There were 20.4 million white-box tablets shipped globally in the first quarter of 2014, decreasing by 27.4% on quarter and by 2.4% on year, according to Digitimes Research.
    The decrease in shipments was mainly because most white-box vendors are based in China and there were fewer working days in the first quarter due to the Lunar New Year holidays, Digitimes Research pointed out.
    Of the shipments, 7-inch models accounted for 70.5%, 7.85/7.9-inch ones 21.3%, 8- to 9-inch ones 4.2%, above 9- to 10-inch 2.9%, above 10-inch 1.1%.
    Due to strong demand in emerging markets including India, Indonesia, Thailand, Russia and Eastern Europe, global white-box tablet shipments in the second quarter of 2014 will increase 14.2% on quarter and 45.6% on year to 23.3 million units.

    2014 H1 changes on the Consumer Tablet Market in China

    imageVersus as it was presented in Section I. of The lost U.S. grip on the mobile computing market, including not only the device business, but software development and patterns of use in general [this same blog, April 14, 2014]

    imageimage

    image

    image

    Wearables Trend and Supply Chain, Samsung Gear Fit as the state-of-the-art wristband wearable, i.e. the hybrid of a smartwatch and a fitness band, as a demonstration

    The April commercial availability of the innovative Gear Fit solution prompted me to a thorough investigation of the wearable phenomenon in general and Gear Fit in particular. This is also a follow-up to my earlier Companion Device Computing as envisaged and implemented by Pranav Mistry and his TTT team from Samsung: the case of Galaxy Gear + Galaxy Note 3 [‘Experiencing the Cloud’, Sept 12, 2013] post.

    Complementary post: Imagination’s MIPS based wearable and IoT ecosystem is the alternative [‘Experiencing the Cloud’, May 17, 2014]

    My current findings are detailed in the following sections of this post:

    I. POST-PC DEVICE MARKET: SMARTPHONES—>TABLETS—>(NOW) WEARABLES
    II. THE ONGOING WEARABLE REVOLUTION
    III. THE SAMSUNG GEAR FIT WEARABLE SOLUTION
    IV. COMPONENT LEVEL DETAILS
    V. LEADING WEARABLE COMPONENT SUPPLIES: MCU SOCS AND SENSOR SOCS*

    *As these type of components are driving the emergence of innovative wearable gadgets


    I. POST-PC DEVICE MARKET: SMARTPHONES—>TABLETS—>(NOW) WEARABLES

    During the investigation of the overall wearable phenomenon I found especially interesting a couple of things in terms of device market perspectives:

    1. While 7 years ago the venerable PC in its various incarnations—desktop, notebook/laptop, and the brand new netbook category—was ruling the device scene, in 2014 smartphones and tablets are the kings of the device market.
    2. Moreover, such a disruption was lead by Apple, not by Microsoft as earlier:


      6/29/2007: iPhone, iPod touch (ARM 1176JZ(F)-S @412 MHz, 128MB, PowerVR MBX Lite, GPRS/EDGE 2.5G for iPhone, 3.5” display of 480 × 320 pixels, 2MP)
      7/11/2008: iPhone 3G (the same except 3.6 Mbps UMTS/HSDPA) & App Store
      6/19/2009: iPhone 3GS (the same except ARM Cortex-A8 @600 MHz, 256MB, PowerVR SGX535, 7.2 Mbps UMTS HSDPA, 3MP camera)
      4/03/2010: iPad (ARM Cortex-A8 @1 GHz, 256MB, PowerVR SGX535, 9.7” display of 1024×768 pixels, WiFi [+3G])
      (As it was described in Apple’s Consumer Computing System: 5 years of “revolutionary” iPhone and “magical” iPad [‘Experiencing the Cloud’, July 9, 2012].)
    3. The already 4 years old Android project was fundamentally affected by the new iPhone, and the subsequent touch-oriented redesign of this open-source OS led to the first commercial device release almost 2 years later (see Android – History [Wikipedia]). Its open-source nature and easy to adopt reference designs by leading SoC vendors lead to a booming Android smartphone market which in 2010 overtook the iPhone market thanks to an ever expanding number of vendors, from tier-1 multinationals to the lowest cost white-box vendors of Mainland China. So the year 2013 ended with an indisputed long-term dominance of the Android smartphones:

    4. According to a quarter earlier post of mine: Q3’13 smartphone and overall mobile phone markets: Android smartphones surpassed 80% of the market, with Samsung increasing its share to 32.1% against Apple’s 12.1% only; while Nokia achieved a strong niche market position both in “proper” (Lumia) and “de facto” (Asha Touch) smartphones [‘Experiencing the Cloud’, Nov 14, 2013]. So Samsung became the only true beneficiary of the Android wave, which enabled the company to reap extra profit (a’la Apple) from its smartphone business but also achieve a significantly higher market share (32.1%) than that of Apple (12.1% only). Meanwhile Nokia was unable to establish a viable foothold with its “third ecosystem” Windows Phone approach (announced in February 2011) despite of having 2 years in row for that and huge marketing subsidies from Microsoft to the tune of $250M per quarter:

    5. As a further effect of both Apple, Samsung and Android dominance on the device market I was able to point (just a month ago) to The lost U.S. grip on the mobile computing market, including not only the device business, but software development and patterns of use in general [‘Experiencing the Cloud’, April 14, 2014] with
      as reflecting a longer term perspective of having Apple, Samsung and white-box vendors of mainland China to dominate not only the smartphone but the tablet market as well, in detriment to PC OEMs.

    6. As a result of all that I already used the following 3d party propositions Mobile Cloud Computing: proven questions and statements about the current and future state-of-the-market [‘Experiencing the Cloud’, March 21, 2014] to highlight the essence of changes:
      – Is Android Becoming the New Windows?
      – Tablets to Outsell PCs Worldwide by 2015
      – Android Blows Past iOS in Global Tablet Market
      – Android To Retain Big Lead In Maturing Smartphone Market
      – The Price Gap Between iOS and Android Is Widening
      – In Just 2 Years, Google And Facebook Have Come To Control 75% Of All Mobile Advertising

    7. As far as the current wearable wave is concerned we have already 15 Years of Smartwatch Evolution [Teardown.com, April 25, 2014] if counted from innovations which are still essential in wearables, like a GPS sensor (first in PRT-1GPJ from Casio introduced in June 1999), an integrated MP3 player (again a Casio device, the WMP-1V introduced in March 2000), or an integrated digital camera (once again a Casio device, the WQV-1 introduced in June 2000), as the previous “smartwatches” were rather computer enhanced digital watches, like the Seiko RC series released in 1985. The above “smartwatch evolution” post is giving a brief overview of the state-of-the-art in terms of Basis Carbon Steel (release date 1/3/2014), Qualcomm Toq (release date 12/02/2013), Samsung Galaxy Gear (release date 9/15/2013) and PebbleWatch (release date 1/23/2013). Thus it is giving ground for comparison with the latest 2014 products, like the Gear Fit detailed in this post. As such it will also show how a relatively slow pace of innovation leading to those products could substantially be accelerated this year and the next 1-2 years lying ahead. 
      Galaxy Gear vs Pebble [Pocketnow YouTube channel, Oct 21, 2013]

    8. As far as other wearables with similar long time evolution are concerned there is the fitness/activity/health tracker/band category which seems to come to end as a distinct device category. As it has been pointed out in The end of fitness bands? Wearable tech feels ready to move forward article on April 21, 2014 from CNET: “Suddenly, it looks like a good handful of fitness band companies are in a state of flux. Nike’s future in FuelBand hardware is coming to an end. Fitbit is lacking its top-end product, the Fitbit Force, after a recall this winter. Basis has been acquired by Intel [yes the maker of the Basis Carbon Steel itself called “the most advanced health tracker in the world” in a smartwatch disguise]. … ‘There’s probably an analogy with MP3 players,’ says Sonny Vu, CEO of Misfit Wearables, maker of another fitness tracker on the market, the Shine. ‘Even more so with GPS units. The latter are still bought by some people, perhaps because of the various benefits of having dedicated hardware. In a similar vein, activity trackers will need to provide for use cases that are compelling enough to justify their existence.’ ”
      CNET Top 5 – Best fitness trackers [CNET YouTube channel, May 2, 2014]

      Wearable tech that will inspire you to get in shape.

      Why Wearable Fitness Trackers Are Just A Fad That’s Going To Die from Jason Jacobs, CEO at fitness app vendor Runkeeper goes even further on May 8, 2014: “While the fitness device category has soared in recent years, most of these products will eventually be swallowed up by smartphones and smart watches offering ‘good enough’ functionality. Even the winners of the fitness tracker race will face an uphill battle against a legion of smart devices. … So what will the winning tracking solution look like? There is no doubt it will be software-only. With better and better devices available, like the iPhone 5S with its M7 motion co-processor or emerging smart watches like the Pebble and the rumored iWatch [from Apple], the need for dedicated fitness tracking devices is being diminished by the day.  No one wants to purchase, wear and maintain a redundant device. The winning software will come as an integrated suite.”

    9. As far as the market volumes and segments are concerned we can rely on Worldwide Wearable Computing Market Gains Momentum with Shipments Reaching 19.2 Million in 2014 and Climbing to Nearly 112 Million in 2018, Says IDC press release from IDC as of April 10, 2014:

      According to new research from International Data Corporation (IDC), wearables took a huge step forward over the past year and shipment volumes will exceed 19 million units in 2014, more than tripling last year’s sales. From there, the global market will swell to 111.9 million units in 2018, resulting in a CAGR of 78.4%.

      Complex accessories (e.g., Nike+ FuelBand, Jawbone UP, and Fitbit devices) will lead the wearables market through 2018 as users continue to embrace their simplicity and low price points. These devices are designed to operate partially independent of any other device, but fully operate when connected with IP-capable devices such as a smartphone, tablet, or a PC. “Complex accessories have succeeded in drawing much-needed interest and attention to a wearables market that has had some difficulty gaining traction,” said Ramon Llamas, Research Manager, Mobile Phones. “The increased buzz has prompted more vendors to announce their intentions to enter this market. Most importantly, end-users have warmed to their simplicity in terms of design and functionality, making their value easy to understand and use.”

      Another segment of the market, smart accessories, will gain momentum through the forecast period and surpass complex accessory shipments by 2018. Similar to complex accessories, with their dependence on connecting with IP-capable devices, smart accessories allow users to add third-party applications that boost features and functions for a more robust experience. While not quite ready for prime time, the smart accessory market will continue to mature as users better understand and accept the value proposition and vendors refine their offerings.

      The third segment of the wearables market is smart wearables, such as Google Glass, which function with full autonomy, independent of any other device except to access the Internet. To succeed, smart wearable vendors must convince users to shift to a new user experience while offering them a robust selection of third-party applications. It is not a question of “if,” but “when” wearables as a whole will extend into the enterprise.

      Finally, according to the latest IDC ConsumerScape 360° survey of more than 50,000 consumers in 26 countries, Samsung, which has already unveiled multiple wearable computing devices, was identified as the most trusted brand for wearables, ahead of Apple, Sony, and Google.

    10. Then we should examine How Big Can Wearables Be For Companies Like Apple? [The Motley Fool YouTube channel, April 24, 2014]

      I’m [i.e. Andrew Tonner, a Motley Fool contributor] a firm believer that wearable are perhaps the best bet to become the most immediate, mass growth market in tech as companies like Apple (Nasdaq: AAPL) should help push this market into the mainstream in the months ahead.

      However, there’s just one problem that should have tech investors scratching their heads on the eve of this emerging tech trend.

      Few people have a handle on just how significant a growth driver the wearables market could be for names like Apple. Thankfully, one well-respected research firm recently attempted to clear up the confusion.

      As you many have rightly assumed, the growth potential for the wearables market is truly awesome, or so said researcher IDC in a note published earlier this month [see the point #9 above].

      In fact, IDC estimates that the wearables market will reach shipments well over one hundred million within five year, providing plenty of profit potential for tech giants like Apple.

      However, as someone that’s spent quite some time following this nascent market, I believe it will actually be up to Apple to truly infuse enough intelligence into the modern smartwatch to make it worth the average consumers’ money. And until Apple changes the game later this year, tech and telecom specialist Andrew Tonner argues in the video below above that the smartwatch market will likely be stuck in a holding pattern.

    With expectations for Apple’s new Magic device in the wearable space starting in 2013 here is the latest Apple iWatch rumorus round-up [T3 – The Gadget Experts YouTube channel, May 1, 2014]

    Apple iWatch rumorus round-up. With Nike dropping the Fuelband could we see the tech inside the first iWatch? We round-up all the rumours of Apple’s wrist-bound device.

    Here is also a speculative article Apple iWatch Release Date, Specs, Features & Design: WWDC Sneak Peek? [Know Your Mobile, April 28, 2014] from which I will  include here the rumors about their critical supply chain partner in terms of premium differentiation:

    LG to produce displays for Apple iWatch

    Details on Apple’s long rumoured smartwatch have been sparse over the past few months but a report from Korea is starting the ball rolling again. The report which came out on Monday states that LG Display will exclusively produce displays for the iWatch.
    There will be a mass production of the screens from July through until September to make 2 million units in total, according to the report. The technology is similar to that used by the Korean manufacturer in the LG G Flex handset and the display will measure 1.52-inches. In terms of the glass, it will be P-OLED or plastic OLED.
    But will it be bendable and feature the same anti-scratch technology which the LG G Flex boasts? What does give this report some credence is the July to September production dates. Apple has experienced some difficulties in getting the iWatch off the ground. Problems have included the screen technology, battery power and other corporate problems.
    The LA Times reports that the latest patent granted to Apple shows that the company is making a curved screen iPhone – following in the footsteps of of Samsung and LG.
    KoreaHerald, also reported on LG’s apparent deal with Apple and quotes an anonymous source saying,
    “LG Display has been in talks over flexible organic light-emitting diode panels for quite a while and it looks like it will be sealing the deal with Apple.”
    As per previous rumour, Apple is thought to still be in a prototype testing phase and has multiple models with different sized screens in testing. These are said to inlcude a 1.4-inch model, a 1.5-inch model and a 1.6-inch model.
    The Chosun Ilbo, citing unnamed “industry sources”, reports that Apple is currently working with three design prototypes with flexible plastic OLED screens. One such prototype with a 1.5-inch flexible OLED panel appears to have been given a limited production run, presumably for test units, while the other two with 1.3-inch and 1.4-inch screens are still being worked on.

    And—finally—here is A look at LG G Flex’s Flexible OLED display [‘AnandTech Video Reviews’ YouTube channel, Dec 3, 2013]:

    LG G Flex has a 6 inch 720p (RGB stripe) flexible OLED display with a plastic substrate and up to 400 mm radius of curvature, G Flex is 700 mm radius of curvature natively.

    With that in mind I can proceed now to the other sections of this post:

    II. THE ONGOING WEARABLE REVOLUTION
    III. THE SAMSUNG GEAR FIT WEARABLE SOLUTION
    IV. COMPONENT LEVEL DETAILS
    V. LEADING WEARABLE COMPONENT SUPPLIES: MCU SOCS AND SENSOR SOCS*

    *As these type of components are driving the emergence of innovative wearable gadgets


    II. THE ONGOING WEARABLE REVOLUTION

    It is clear that a wearable revolution is upon us. A few important signs of that:

    1. Wearable Tech at CES 2014! [Android Authority YouTube channel, Jan 14, 2014]
      We may not have been able to look at all of the wearable tech at CES 2014, but the ones we did get to certainly got us excited about the upcoming trend. Check out these clips of some of the wearable technology we got to get our hands on!
    2. The Android Wear site became available from March 18, 2014 with Introducing Android Wear Developer Preview:

      Android Wear extends the Android platform to wearables, starting with a familiar form factor – watches. Download the developer preview at: developer.android.com/wear.” See also DevBytes – Android Wear: Developer Preview [Android Developers YouTube channel, March 18, 2014]

    3. We know that there is an LG G Watch powered by Android Wear being developed in close collaboration with Google [LG press release, March 19, 2014], it “… will be compatible with a wide range of Android™ smartphones. … LG is planning to introduce its first watch powered by Android Wear in the second quarter of 2014.
    4. On May 11, 2014 we had also an LG G Watch : Product Movie promotion with a new LG G Watch site for marketing (it was rumored to arrive in June):
      Sleek and lightweight for all-day comfort. Metal body for a timeless look. Ready for anything, anytime with a single charge. It is time to experience LG G Watch.
    5. Microsoft will also join the wearable platform race according to CEO Satya Nadella making the following remarks on the MSFT Earnings Conference Call, April 24, 2014: “Fundamentally, we participated in the PC market, now we are in a market that’s much bigger that the PC market. … Then, when it comes to new opportunities from wearables to Internet of things, we want to be able to participate in all of this with our Windows offering, with our tools around it, and we want to be able to price by category. … because in a world of ubiquitous computing we want Windows to be ubiquitous. That doesn’t mean it’s one price, one business model for all of that. And it’s actually a market expansion opportunity, and that’s the way we’re going to go execute on it.

      The context in which Microsoft’s “mobile first –> mobility first” and “cloud first” approach gets real meaning IMHO is consisting of a set of solutions, mainly:

      • platform solutions: this is where wearables are a distinct solution category 
      • productivity solutions
      • leisure and entertainment solutions: here wearables are a distinct solution category as well

      Then we should remember Nadella’s answer to his question posed in his email to employees on first day as CEO [Feb 4, 2014]

      What do we do next?

      This starts with clarity of purpose and sense of mission that will lead us to imagine the impossible and deliver it. We need to prioritize innovation that is centered on our core value of empowering users and organizations to “do more.” We have picked a set of high-value activities as part of our One Microsoft strategy. And with every service and device launch going forward we need to bring more innovation to bear around these scenarios.

      From my earlier analysis of Microsoft reorg for delivering/supporting high-value experiences/activities [‘Experiencing the Cloud’, July 11, 2013] I will include here the following high-value activities based on devices and services delivery which were defined back then by the company (as no more recent definition is publicly available) and highlight those that are relevant in terms of wearables:

      Reinventing expression and documents. People love and need to express themselves in new ways. Documents are going from being printed to being experienced. There are many high-value needs for personal creative expression — some just for fun, others at work or at school. We will reinvent the tools and form of expressing oneself (and expressing things as a group) from paper and slides to online. We will ensure that the tools handle multimedia (photos, videos, text, charts and slides) in an integrated way and natively online. These documents/websites will be easily sharable and easily included in meetings. They will offer complex options such as imbedded logic and yet be easy to author, search and view. These documents will be readable from a browser, but the experience will be infinitely better if read, annotated or presented with our tools.
      Social communication (meetings, events, gathering, sharing and communicating). Social communications are time-intensive, high-value scenarios that are ripe for digital re-imagination. Such innovation will include new ways to participate in work meetings, PTA and nonprofit activities, family and social gatherings, and more. We can reimagine email and other communication vehicles as the lines between these vehicles grow fuzzy, and the amount of people’s digital or digitally assisted interaction continues to grow. We can create new ways to interact through hardware, software and new services. Next-gen documents and expression are an important part of online social communications. We will not focus on becoming another social network for people to participate in casually, though some may use these products and services that way.
      Next-generation decision-making and task completion. Our machine learning infrastructure will understand people’s needs and what is available in the world, and will provide information and assistance. We will be great at anticipating needs in people’s daily routines and providing insight and assistance when they need it. When it comes to life’s most important tasks and events, we will pay extra attention. The research done, the data collected and analyzed, the meetings and discussions had, and the money spent are all amplified for people during life’s big moments. We will provide the tools people need to capture their own data and organize and analyze it in conjunction with the massive amount of data available over the Web. Bing, Excel and our InfoNav innovations are all important here. Decision-making and tasks mean different things in personal versus professional lives, yet they are important in both places.
      Serious fun. This expression may sound like an oxymoron, yet it encapsulates an important point of differentiation for us. There are many things people do for light fun, for example play solitaire, spend three minutes on a word game or surf the TV. Although we will enable these activities effectively, our biggest opportunity is in creating the fun people feel most intensely, such as playing a game that lasts hours and takes real concentration, or immersing them in live events and entertainment (including sports, concerts, education and fitness) while allowing interactive participation. Interactivity takes engagement and makes things serious; it really requires differentiated hardware, apps and services. People want to participate at home and on the go, and in gatherings with others. We see a unique opportunity to make experiencing events with others more exciting with interactivity. We also see opportunity in fitness and health because, for many, this is serious fun much more than it is a task.
    6. Meanwhile Samsung commercially launched next-generation wearable devices on April 11, 2014:

      Samsung Gear 2 and Gear 2 Neo
      [they were introduced at MWC 2014 in Barcelona]
      The Gear 2 and Gear 2 Neo have taken wearable technology to the next level acting as an extension of a consumer’s daily life with integrated fitness applications, a standalone music player, remote control feature and compatibility with a wide variety of Samsung devices. Both devices offer a slim, lightweight design in a mere 10 mm thickness. The 2-megapixel autofocus camera is now on the bezel, so you can change the strap (Charcoal Black, Gold Brown and Wild Orange options) to match your mood or outfit. The Gear 2 is currently available in charcoal Black, gold Brown and the newly added wild Orange, while the Gear 2 Neo comes in charcoal Black, mocha Gray and wild Orange.

      When paired with a GALAXY smartphone, the Gear 2 allows you to receive or ignore incoming calls and messages, and provides instant notifications. You can also control a TV or settop box via the WatchON Remote application and IrLED sensor, and listen to music via a Bluetooth headset.

      The next generation of Gear devices: Samsung Gear 2 with increased connectivity, customization and control, and Gear Fit that blends style, fitness and convenience.

      Samsung Gear Fit [it was introduced at MWC 2014 in Barcelona]
      The Gear Fit is the perfect blend of style, fitness and convenience for a wearable device like no other. Featuring the industry’s first curved Super AMOLED display; the superior connectivity benefits of Samsung’s wearable technology with custom, real time fitness coaching provides personalized advice and workout recommendations. The Gear Fit keeps you up to date with instant notifications when paired with a GALAXY smartphone, lets you change straps and customize display themes, so you can express your individual style. The Gear Fit is currently available in charcoal Black, mocha Gray, and wild Orange, as well as the newly added supreme Red, cobalt Blue and vital Green.

      All the new Gear devices (Gear 2, Gear 2 Neo and Gear Fit) come with a built-in heart rate sensor and real-time fitness coaching. They are also dust and water resistant (IP67), so you don’t have to worry when you are out and about.

    7. The Gear 2 and Gear 2 Neo next-gen Samsung smartwatches are based on the new Tizen OS, on the Tizen Wearable Platform version of it, and Samsung released the v1 of Tizen SDK for Wearables on March 17, 2014. With it the active Tizen app developer community will “provide users with enhanced wearable experiences for fitness, shopping, social media, music, news, and sleep management”. In addition the new Samsung Mobile SDK 1.5 introduced at MWC 2014 in Barcelona provided a new Accessory Package for communicating between the Host-side Application and Wearable-side Widget (developed with Tizen SDK for Wearable). With all that Samsung is now offering the following types of Gear applications:
      image
      In fact the Accessory capability is meant to be a very general architecture for connecting various accessory devices to Samsung smart devices (phones, tablets etc.), and thus it is providing the underpinning for a whole “Samsung Accessory Eco-system” under development by the company:
      image

      Samsung smart devices are equipped with the Samsung Accessory framework, which supports various accessory services. Accessory devices use the framework to interwork with Samsung smart devices.

      The Accessory package provides a single protocol that supports multiple connectivity technologies, such as Wi-Fi, Bluetooth classic, and BLE (Bluetooth v4.0). The Samsung Accessory framework supports service discovery that is independent of the connectivity technology, and establishes connections between applications for data exchange. You need no technical knowledge of each connectivity model to develop Accessory services.

      Accessory devices communicate with Samsung smart devices through the various connectivity channels supported by the devices. Samsung smart devices can be connected to many accessory devices to implement services in applications. Connection between the Samsung smart device and an accessory allows the accessory device to offer more with the functions supported by the Samsung smart device.”

    8. Samsung also developed a wearable only connectivity architecture with its smart devices. Gear Fit is the first implementation of that. On the wearable device only Samsung provided widgets are available for creating the Gear Fit UI and controlled with commands initiated on the Gear Fit application host, a Galaxy phone or tablet, i.e. an Android application. The Samsung provided Gear Fit SDK is essentially providing another Samsung Mobile SDK 1.5 package called CUP (Companion UI Profile), and on the Gear Fit there is a CUP Browser containing a CUP Service that translates the commands from the CUP host. For connectivity here only Bluetooth is used.
      imageThe company is also using a specially developed real-time operating system (RTOS) on the wearable device here. “It’s a much simpler OS, and it helps us keep the battery life three to four days whereas Gear 2 is [about] two days,” Seshu Madhavapeddy, senior vice president of product and technology at Samsung Telecommunications America, told CNET. Gear Fit and other wearables like it could also have a much better response time to events, the memory and processing power requirements will be less than it would be in the case of Tizen-based devices (like the Gear 2 and Gear 2 Neo), and consequently the devices could also be much lighter.

      Gear Fit has a weight of 27g while the Gear 2 is 68g and the Gear 2 Neo is 55g. Gear 2 (as well as Gear 2 Neo) has a dual-core ARM Cortex-A7 based Samsung Exynos 3250 SoC running at 1GHz (specs are not public yet) paired with an ARM Cortex-M4 based STMicroelectronics STM32F401B microcontroller SoC running at 84MHz. (Note that this is for downloading the control for heart rate and motion sensor functionalities to this very low-power CPU from the main SoC, and thus conserving a lot of battery power). Meanwhile Gear Fit has a single SoC, the ARM Cortex-M4 based STM32F439ZIY6S microcontroller from STMicroelectronics running at 180MHz. Also this microcontroller has a 256KB SRAM and 2MB flash memory on the chip itself, while for the Gear 2 devices the 512KB DRAM and 4GB flash memories are off the Exynos SoC. (For details about these devices see the Introducing Samsung Gear, Samsung Unpacked 2014 Episode 1 [Feb 24, 2014] presentation.)


    III. THE SAMSUNG GEAR FIT WEARABLE SOLUTION

    Samsung Gear Fit – Official TVC (Design) [Samsung Mobile YouTube channel, April 14, 2014]

      • Wearable innovation is here to change the way you live.
      • Introducing the world’s first curved Super AMOLED display on a wearable device.
      • Receive texts, emails, meeting notifications, and reject calls right from your wrist.
      • Be in tune with your body with the built-in heart rate sensor, and stay fit with a real-time coaching assistant.
      • To find out more about Samsung Gear Fit, click here:
        http://www.samsung.com/global/microsite/gear/gearfit_features.html

    image

    Samsung UNPACKED 2014 Episode 1 [Feb 25, 2014] “Stay in shape with Gear Fit”:

    As the world’s first curved Super AMOLED wearable device, the Samsung Gear Fit is ready to revolutionise the way you exercise. It features a 1.84-inch touch screen, changeable straps and instant notifications for incoming calls, emails, texts and much more. However, what makes the Gear Fit so life-changing is its built-in fitness manager. This includes a Heart Rate Sensor and real-time fitness coaching, and is the perfect companion for anyone looking to keep a close eye on their wellbeing. Add to this the enhanced connectivity – now compatible with up to 20** Galaxy devices via the new Tizen OS – and you really do have the smartest fitness band.

    ** Note that as of April 27, 2014 Samsung Gear Fit (as well as Gear 2 and Gear 2 Neo) is compatible with 18 types of device models : Samsung Galaxy S5 / Galaxy Grand 2 / Galaxy Note 3 / Galaxy Note 3 Neo / Galaxy Note 2 / Galaxy S4 / Galaxy S3 / Galaxy S4 Zoom / Galaxy S4 Active / Galaxy S4 mini / Galaxy Mega 6.3 / Galaxy Mega 5.8 / Galaxy Note 10.1 (2014 Edition) / Galaxy NotePRO (12.2) / Galaxy TabPRO (12.2/10.1/8.4) – Compatible device models to be further expanded.

    So let’s see first Samsung Gear Fit Features Overview – Feature Focus [Android Authority YouTube channel, Feb 27, 2014]

    The Samsung Gear Fit is a hybrid of a smartwatch and a fitness band – and here are the things it can do.

    and then Samsung Gear Fit Review [Android Authority YouTube channel, April 17, 2014]

    Samsung’s foray into the world of fitness bands brings some smartwatch capabilities along for the ride. But is everything we hoped it would be? Josh Reviews the Samsung Fit Gear.

    Then have a look at the internals (teardown):

    image

    image

    image

    imageimage

    • 1.84” Curved Super AMOLED touchscreen display (432 x 128 pixels)
    • 180 MHz ARM Cortex-M4 CPU
    • Accelerometer, gyroscope, and heart rate sensor (an optical one, see right:)
    • Battery good for 3-4 days of normal use
    • Bluetooth 4.0 LE

    image

    See The Samsung Gear Teardown Review (Gear 2 and Gear Fit!) [iFixit Video YouTube channel, April 11, 2014], for the Gear Fit starting at [2:45]:

    Hot on the heels of Samsung’s latest flagship phone the Galaxy s5 turn on our teardown table, we are turning our attention to the wearables, the Galaxy Gear 2 and the Galaxy Gear fit. Lets take a look inside and tear them down! Check out the full teardown at iFixit http://www.ifixit.com/Teardown/Samsung+Gear+Fit+Teardown/24029

    Gear has a special USB charging solution as shown below:

    image

     

    Gear Fit development:

    From Samsung Developer Day 2014 at MWC – Keynote

    [19:51] The easiest way to think about the Gear Fit that it’s an extended screen from your Android application running on a Galaxy phone or tablet. [20:02]

    From Samsung Developer Day 2014 at MWC – Samsung Gear SDK session

    image
    [20:00] … Gear Fit [Android] Application Structure … [27:30]

    From Develop Apps for Samsung Gear 2, Gear 2 Neo, and Gear Fit [Samsung Tomorrow, Feb 27, 2014]

    Samsung released the Gear Fit SDK for Gear Fit exclusive apps. The major difference between Gear 2 SDK and the Gear Fit SDK is that Gear 2 apps can be standalone apps developed through Web platforms, whereas Gear Fit would require 2 different kinds of app and Android OS

    More specifically, a Gear Fit app needs to have a host app for the device that needs to be developed with Android and Gear Fit exclusive, whereas Gear Fit SDK has two parts: the host app and the CUP (Companion UI Profile) browser. Gear Fit SDK allows you to easily control wearable devices (CUP browser) by using Android device (Host) which is connected in the Bluetooth environment. The host of Gear Fit SDK has two elements: API that can control 12 different kinds of widgets through CUP Browser and the Host application developed by the developers with the Gear Fit SDK.

    CUP Browser consists of Service for Gear Fit, which receives the command then translates, and the Widget of Gear Fit, which receives the translation to display it on the screen then transfer the UI event to the CUP Host. There are about 12 kinds of CUP widget and Samsung plans to increase the number.

    From Samsung Mobile SDKCUP (Companion UI Profile) [Feb 25, 2014]

    What Is CUP?

    CUP (Companion UI Profile) allows you to control wearable devices (Gear Fit) using an Android device (CUP host). The CUP Browser and host are connected with Bluetooth.

    CUP provides over 12 winset types, which you can display on wearable devices of various resolution types. You can also get user interaction events from the winset to appear on the wearable device screen.

    image

    You can use the CUP package to provide the following winset types to wearable devices:

    image

    CUP Technology

    The purpose of CUP is to provide interaction between a hosting Android device and its wearable CUP Browsers.

    • CUP host consists of the host application created with the CUP SDK, and the classes that control more than 12 winsets on a CUP Browser.
    • CUP Browser contains a CUP Service that translates the commands from the CUP host. The CUP winset displays the commands on the CUP Browser and sends user events from the UI back to the CUP host.

    image

    The CUP process functions as follows:

    • The host application sends a command to the CUP browser requiring the Browser to display a certain winset.
    • The CUP Browser displays the winset.
    • After the user interacts with the winset, the Browser sends the user event back to the host application, which can proceed to the next step.

    image

    Using CUP, you can save the user’s Bluetooth bandwidth and make various UI effects available at the same time. Because CUP processes add very little weight to devices, you can apply it to various products, such as consumer electronics, flight information services, and screenless devices.

    Restrictions

    CUP has the following restrictions:

    • Devices with Android 4.3 Jelly Bean (API level 18) or higher support CUP.
    • CUP requires minimum 1GB of RAM.

      [on the CUP host obviously as the Gear Fit has only 256KB S-RAM (within the STM32F439ZIY6S chip)]

    From Samsung Mobile SDKRemote Sensor [Feb 25, 2014]

    What Is Remote Sensor?

    Remote Sensor allows you to collect remote sensor data, such as a pedometer data, user activity events and wearing state, from a wearable device, which has a variety of sensors, for example, accelerometer and gyroscope. Your applications that run on the host device and use the Remote Sensor package can include, for example, health care and life logging features. Remote Sensor gets the sensor data through Bluetooth communication.

    image

    You can use the Remote Sensor package to:

    • Get user activity data from the wearable device
      When the user of a wearable device starts running or walking, the application on the host device can be notified.
    • Get pedometer data from the wearable device
      The application on the host device can get the user’s step count.
    • Get the state whether the user wears wearable device or not
      The application on the host device can get the user’s wearing state for the wearable device.

    Getting User Activity Data

    With Remote Sensor, your application on the host device can get the state of the user activity from the wearable device. For example, when the user starts running or walking with the wearable device, the remote sensor notifies your application. When the user changes their activity, the remote sensor notifies you again, after 4 ~ 5 seconds (about 8 footsteps).

    Getting Pedometer Data

    You can set your application to get pedometer data (the step count from the wearable device. If you register an event listener for the wearable device’s pedometer, you can get the accumulated pedometer data from the start of the day (00h:00m:00s) till the current time. You can get the pedometer data every 5 minutes.

    Getting Wearing State Data

    With Remote Sensor, you can check whether the user is wearing a wearable device. If you register an event listener for the wearable device’s wear state sensor, you can get the current state once and you do not have to unregister the listener. You get the data in about 1 second after you register the listener.

    Remote Sensor Service

    The Remote Sensor application requires the Remote Sensor Service (illustrated in the following figure), which is a separate service with no GUI. The Remote Sensor Service requires the Gear Manager (or Gear Fit Manager) for Bluetooth communication with wearable devices. The Remote Sensor Service is packaged in the SDK and also can be updated through App stores, such as Samsung Apps.

    image

    Restrictions

    Remote Sensor has the following restrictions:

    • Devices with Android 4.3 (Jelly Bean API level 18) or higher support Remote Sensor.
    • Remote Sensor only supports Bluetooth connections. Support for BLE (Bluetooth Low Energy)*** will be added in a future release.
    • The supported devices are Samsung wearable devices (such as Gear Series and Gear Fit). Gear 1 (Android OS) is not supported.
    *** Note that Samsung Gear Fit uses Bluetooth® v4.0 LE for connectivity, so the Remote Sensor possibility for the Gear Fit will be available in the future.


    IV. COMPONENT LEVEL DETAILS

    Only the following key components are considered here:

    1. The STM32F439ZIY6S High-performance Microcontroller of the STM32 F4 Series MCUs from STMicroelectronics
    2. The MPU-6500 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™ Devices from InvenSense (marked as MP65M)
    3. BCM4334WKUBG Single-Chip Dual-Band Combo Device Supporting 802.11n, Bluetooth 4.0+HS & FM Receiver from Broadcom

    1. The STM32F439ZIY6S High-performance Microcontroller of the
    STM32 F4 Series MCUs from STMicroelectronics

    imageThe STM32F4 Series [Feb 17, 2013] Microcontrollers (MCUs) from STMicroelectronics

    The STM32F439 was announced (along with STM32F429, both as sampling) a week before the Embedded World 2013 (Feb 26-28, 2013). Here is a video about that:

    … “for customers who want to use .NET Micro Framework or a Java framework” … “targeting general purpose applications but also new ones with graphics” … “we also improved the power consumption now reaching 100 µA at 25°C” …

    There is also a video about Java in Embedded – IS2T & STMicroelectronics (EW 2013).

    From STMicroelectronics Energizes High-Performance Embedded Development Ecosystem for STM32F4 Microcontrollers [press release, Sept 12, 2013]


    The high-performance STM32F429/439 series [announced in February 2013] now entering production has the industry’s highest-performing ARM® Cortex™-M4 core, at 180MHz, able to achieve 225DMIPS (Dhrystone MIPS) and 608 CoreMark (EEMBC Coremark benchmark) scores using industry-standard performance metrics thanks to the ST adaptive real-time accelerator (ART Accelerator) allowing zero-wait execution from Flash. These devices offer up to 2Mbyte of dual-bank Flash allowing safe system upgrades in the field, ST’s unique Chrom-ART Accelerator™ giving customers a competitive edge in graphics processing, and an integrated TFT-LCD controller.

    The STM32F427/437 series [announced in November 2012 with the 168MHz core which entered full production in February 2013] is also entering full production, upgraded with the 180MHz core, dual-bank memory, and other features of the STM32F429/439 excluding the TFT-LCD controller.

    Also entering volume production is the STM32F401 microcontroller announced in April 2013. The device balances high performance (105 DMIPS and 285 CoreMark, and zero-wait Flash execution with the ART Accelerator), power efficiency and high feature integration in packages as small as 3x3mm.

    A year later, at the Embedded World 2014 (Feb 25–27, 2014), STMicroelectronics was touting smartwatch (with STM32L or STM32F429) and hub (with STM32F401) applications within their now completed Internet of Things (IoT) portfolio as follows in the video below:

    STMicroelectronics talked about how they drive Internet of Things growth with the wide range of STM32 products include Low Power MCU, MEMS, and sensor hubs, etc.

    Note also the new STM32 Nucleo Development Board and STM32Cube.

    This all started much earlier back to 2010 for both the Cortex-M4 and the STM32 F4 series:
    – launch of Cortex-M4 by ARM in February 2010: “has been licensed by five leading MCU semiconductor companies including NXP, STMicroelectronics and Texas Instruments
    “The Cortex-M4 processor extends the use of Cortex-M cores to applications requiring intensive mathematical computation,” said Semir Haddad, 32-bit MCU Marketing Manager of ST Microcontroller division. “A product line based on the Cortex-M4 processor will complement our line of STM32 microcontrollers, giving our customers the ability to combine the scalability of STM32 with enhanced signal processing capability.”
    – regarding the general idea about this type of cores here is an explanatory video: 
    ARM Cortex-M for Wearables and IoT [Charbax YouTube channel, March 15, 2014]
    ARM Cortex-M Marketing Manager Diya Soubra talks Wearables and Internet of Things using ARM Cortex-M processor family. The ARM Cortex-M is a group of 32-bit ARM processor cores intended for microcontroller use, consists of the Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4. The ARM Cortex-M processor family is an upwards compatible range of energy-efficient, easy to use processors designed to help developers meet the needs of tomorrow’s embedded applications. Those demands include delivering more features at a lower cost, increasing connectivity, better code reuse and improved energy efficiency. The Cortex-M family is optimized for cost and power sensitive MCU and mixed-signal devices for end applications such as smart metering, human interface devices, automotive and industrial control systems, white goods, consumer products and medical instrumentation. ARM Cortex-M processors is a global microcontroller standard, having been licensed to over 40 ARM partners including leading vendors such as Freescale, NXP Semiconductors, STMicroelectronics, Texas Instruments, and Toshiba. Using a standard processor allows ARM partners to create devices with a consistent architecture while enabling them to focus on creating superior device implementations.
    – first Cortex-M4 SoC launch in Q3’11: “STMicroelectronics launched a high-speed Cortex-M4 based MCU for electric motor control and medical applications
    STM32 F4 – World’s highest performance MCU [STonlineMedia YouTube channel, March 16, 2012]
    STMicroelectronics’ STM32 F4 series of high-performance Cortex™-M4 MCUs featuring DSP and FPU instructions, reaching up to 210 DMIPS.
    STMicroelectronics Launches World’s Most Powerful Cortex Processor-based Microcontrollers [press release via PRnewswire, Sept 21, 2011]
    … This extension to the STM32® platform is based on the latest ARM® Cortex™-M4 core, which adds signal-processing capabilities and faster operations to the already outstanding portfolio of STM32 microcontrollers; the new series, which is available now, reinforces ST’s leadership and claims the title of highest-performance Cortex-M processor-based microcontroller range in the market(1).
    The STM32 range is the industry’s most successful family of 32-bit ARM Cortex-M processor-based microcontrollers, with nearly one of every two units shipped being a member of the STM32 family(2). Beyond addressing a wide range of applications with the existing STM32 portfolio including metering, medical services, point of sales (POS), building security and automation, home audio, and others, ST is further widening its target applications with the STM32 F4 series. The single-cycle DSP instructions of the STM32 F4 open the doors to the digital signal controller (DSC) market that requires high computational capability and DSP instructions for demanding applications such as high-end motor control, medical equipment and security.

    Claude Dardanne, Executive Vice President and General Manager Microcontrollers, Memories and Secure MCUs Group, “With more than 250 compatible devices already in production, the industry’s best development ecosystem, and outstanding power consumption and overall functionality, the F4 family is the cherry at the top of the STM32 family of Cortex-M processor-based MCUs, which now includes four product series: the STM32 F1 series, the STM32 F2 series and the STM32 L1 series, all based on the Cortex™-M3 processor, and the new F4 Series, based on the Cortex-M4 processor.”

    Beyond offering pin-to-pin and software compatible with the high-performance F2 series, the F4 series operates at a higher frequency (168 MHz instead of 120 MHz), offers single-cycle DSP instruction support and a Floating Point Unit, larger SRAM (192 Kbytes vs. 128 Kbytes), embedded flash memory from 512 Kbytes up to 1 Mbyte, and advanced peripherals for imaging, connectivity and encryption. ST’s 90nm CMOS process technology and the integrated ST Adaptive Real Time “ART Accelerator” deliver state-of-the-art performance, with zero-wait-state program execution up to 168 MHz, and best-in-class dynamic power.(3)

    The STM32 F4 Series is available in four variants:
    STM32F405x: …
    STM32F407 products add several advanced peripherals to the ones offered on the STM32F405 products: …
    The STM32F415 and STM32F417 parts add a crypto/hash processor to the STM32F405 and STM32F407. This crypto/hash processor includes hardware acceleration for AES 128, 192, 256, Triple DES, HASH (MD5, SHA-1). As an example of the performance achieved by the crypto/hash processor, the AES-256 encryption throughput reaches up to 149.33 Mbytes/s.
    All variations are in volume production, with prices beginning from $5.74 for the STM32F407VET6 with 512 Kbytes of Flash and 192 Kbytes RAM in the LQFP100 package, for orders of more than 1,000 units.
    (1) 363 Coremark score and 210 DMIPS
    (2) 45% market share accumulated 2007-Q1 2011 period, according to ARM Cortex-M unit shipments reporting
    (3) 38.6 mA at 168 MHz executing Coremark benchmark from Flash memory with peripherals disabled
    STM32 F4 series World’s highest performance [STonlineMedia YouTube channel, Jan 6, 2012]
    STM32 F4 tutorial – High-performance Cortex-M MCU 168 MHz/210 DMIPS, with floating point unit (FPU)

    imageMore presentation information:
    STM32 F4 series High-performance Cortex™-M4 MCU [Sept 26, 2011]

    More technical details about the latest products first in this video STMicroelectronics High Performance MCUs (EW 2014) [ARMflix YouTube channel, Feb 26, 2014]

    ST introduced two new product lines of its High Performance MCUs at EW 2014. The 1st is STM32 F429 which is based on Cortex-M4 processor running at 180 MHz CPU/225 DMIPS, up to 2 Mbytes of dual-bank flash adding an LCD-TFT controller.

    The other one is STM32 F401 microcontroller which is the first in a new range of STM32 Dynamic Efficiency devices [launched with Powerful STM32F4 Microcontrollers Launch New Generation of STM32 Dynamic Efficiency™ Devices from STMicroelectronics [press release, Jan 29, 2014] ] offering the performance of the Cortex-M4 core (with floating point unit) running at 84 MHz while reaching outstanding power [consumption] figures in Run and Stop modes.

    Then even more at: STM32F4 Series, STM32F429/439 [Nov 13, 2013], STM32F439ZI
    and STM32 F4 series – High-performance CortexTM-M4 MCUs [brochure, Feb 14, 2014]

    The STM32F429/439 lines are designed for medical, industrial and consumer applications where the high level of integration and performance, embedded memories and peripherals inside packages as small as 5 x 5.1 mm are required. The STM32F429/439 lines offer the performance of the Cortex®-M4 core (with floating point unit) running at 180 MHz while reaching lower static power consumption (Stop mode) versus STM32F405/415/407/F417.

    Power efficiency: ST’s 90 nm process, ART Accelerator and the dynamic power scaling enables the current consumption in run mode and executing from Flash memory [i.e. with peripherals off] to be as low as 260 µA/MHz at 180 MHz. In Stop mode, the power consumption is 100 µA typical, which is 3 times lower versus STM32F405/415/407/F417.

    Integration: The STM32F429 and STM32F439 portfolio provides from 512-Kbyte dual-bank Flash to 2-Mbyte dual-bank Flash, 256-Kbyte SRAM and from 100 to 216 pins in packages as small as 5 x 5.1 mm. With such memory integration, the need for external memory is reduced, allowing smaller, safer and low-emission PCB designs.

    image


    2. The MPU-6500 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™ Devices from InvenSense (marked as MP65M)

    MPU-6500 Six-Axis (Gyro + Accelerometer) MEMS MotionTracking™ Devices [July 10, 2012] for Smart Phones, Tablets, Wearable Sensors, Remotes, Pedestrian Navigation, and Sports & Fitness Tracking

    Overview

    imageThe MPU-6500 is the company’s second generation 6-axis MotionTracking device for smartphones, tablets, wearable sensors , and other consumer markets. The MPU-6500, delivered in a 3x3x0.9mm QFN package, is the world’s smallest 6-axis MotionTracking device and incorporates the latest InvenSense design innovations for MEMS gyroscopes and accelerometers, enabling dramatically reduced chip size and power consumption, while at the same time improving performance and cost. The new MPU-6500 addresses the market requirements for high performance applications such as pedestrian navigation, context-aware advertising, and other location-based services, along with supporting the specifications for emerging wearable sensor applications such as remote health monitoring, sports and fitness tracking, and other consumer applications. The MPU-6500 MotionTracking device sets a new benchmark for 6-axis performance with nearly 60% lower power, a 45% smaller package, industry-leading consumer gyroscope performance, and major improvements in accelerometer noise, bias, and sensitivity.

    The single-chip MPU-6500 integrates a 3-axis accelerometer, a 3-axis gyroscope, and an onboard Digital Motion Processor™ (DMP) in a small 3x3x0.9mm QFN package. The new 6-axis device is the world’s first motion sensor to operate at 1.8 volts and consumes only 6.1mW of power in full operating mode; it incorporates breakthrough gyroscope performance of only ±5dps zero-rate-output and 0.01dps/√Hz of noise; and delivers dramatically improved accelerometer specifications including a typical offset of only ±60mg, 250µg/√Hz of noise, and only 18µA of current in low-power mode.

    The MPU-6500 software drivers are fully compliant with Google’s latest Android 4.1 Jelly Bean release, and support new low-power DMP capabilities that offload the host processor to reduce power consumption and simplify application development. The MPU-6500 includes MotionFusion and run-time calibration firmware enables consumer electronics manufacturers to commercialize cost effective motion-based functionality.

    MPU-6500 System Diagram

    image

    From the MPU-6500 Product Specification Revision 1.1 [March  5, 2014]

    image
    MPU-6500 Block Diagram

    InvenSense MotionProcessing™ Technology Demo [InvenSense Inc. YouTube channel, March 12, 2010]

    This video demo from InvenSense features the MPU-3000™, a revolutionary MEMS-based motion processing technology for next generation mobile handset. The MPU-3000 combines the worlds first 3-axis gyroscope with an embedded digital motion processor designed exclusively for mobile handsets to enable sophisticated features such as MotionCommand™, TouchAnywhere™, and AirSign™ in smartphones.

    Optical Image Stabilization for Smartphones [InvenSense, July 13, 2010]

    We define MotionProcessing™ as detecting, measuring, synthesizing, analyzing and digitizing an object’s motion in three-dimensional space. The illustration below shows how a smartphone moves in 3D space, either by rotating around or moving along any of its three principle axes. By attaching motion sensors, such as a three-axis gyroscope and a three-axis accelerometer, the smartphone’s movement can be accurately tracked. The gyroscope tracks the rotation of the smartphone as it tilts forward or backward (pitch), turns from portrait to landscape (yaw) and twists from side to side (roll), while the accelerometer measures the linear movement of the smartphone as it moves up or down (y-axis), left or right (x-axis) and toward or away from the user (z-axis). The analog data from the gyroscope and accelerometer can be digitized and synthesized using complex algorithms to support motion-based user interfaces and other applications, such as motion-based video games and on-screen menu navigation.
    imageWe have developed a proprietary, MotionProcessing platform that offers our customers an intelligent, integrated scalable solution that is comprised of several fundamental elements: our MEMS- based motion sensors and their companion mixed-signal ICs, embedded Digital Motion Processors™ (DMP) that combine digital outputs from multiple motion sensors to provide more accurate motion tracking functionality, which we refer to as MotionFusion™, and our MotionApps™ platform that allow our customers or their software developers to create applications using our MotionProcessing solutions. To promote faster adoption and time to market for our customers, we provide application programming interfaces and pre-configured application functionalities, such as gesture recognition, which we refer to as MotionApps software. As a result of our modular and scalable platform architecture, our current and planned products span increasing levels of integration, from standalone single-chip consumer-grade gyroscopes to fully integrated multi-sensor, multi-axis digital motion processing solutions. We currently sell three-axis gyroscopes that accept input from external accelerometers to provide a complete six-axis MotionFusion output. The diagram below illustrates the fundamental elements of our platform.

    InvenSense MotionProcessing™ Platform

    image

    The core of our MotionProcessing platform is comprised of our proprietary MEMS-based motion sensors that provide the functionality required to measure analog motion signals. The high performance of our sensors is enabled by our Nasiri-Fabrication process. Through our DMP, the analog signals from our sensors are converted into digital signals and are intelligently assimilated and analyzed through our embedded MotionFusion technology. Our solution also includes a software abstraction layer, which includes our MotionApps™ platform and Application Programming Interfaces (API), that utilize the output of our DMP to enable system designers to use the sensor data in their applications without the need to understand analog sensor output and develop related MotionProcessing algorithms. Finally, our MotionProcessing solutions provide system designers pre-configured MotionApps software to enable motion-based interfaces and speed their time to market, as well as ease the process of integrating our MotionProcessing solutions in their systems.

    image

    See also InvenSense® Technology [InvenSense, May 11, 2012] which is copied in the very end of this post as well.


    3. BCM4334WKUBG Single-Chip Dual-Band Combo Device Supporting 802.11n, Bluetooth 4.0+HS & FM Receiver from Broadcom

    Note that only Bluetooth 4.0 LE functionality is definitely used in the Gear Fit device. There is no information whether the device has an FM radio receiver or not.

    From Broadcom Announces New Combo Chips – BCM4334, BCM43241, Shows 802.11ac Once More [AnandTech, Feb 28, 2012]

    … the combo chip space … is hugely important for both smartphones, tablets, and other form factors usually driven by ARM SoCs. Combo chips traditionally deliver WLAN, Bluetooth, and FM connectivity, and recently a few more air interfaces have joined the fray. The main players in the smartphone combo chip market have been Broadcom with their BCM4325, BCM4329, and BCM4330 parts, TI with their WiLink series, and newcomer Qualcomm Atheros.

    BCM4334 changes from a 65nm process to 40nm LP, which itself offers a power profile reduction. The change isn’t a simple die shrink either, Broadcom says it has worked on and refined the existing BCM4330 design and reduced power a further 40-50% and dramatically reduced standby power by 3 orders of magnitude. I asked Broadcom to give me a realistic estimate of power consumption – BCM4330 in full Rx mode consumes around 68mA, BCM4334 consumes 36mA at the same voltage, just to give an example of the reduction. …

    BCM4334 Single-Chip Dual-Band Combo Device Supporting 802.11n, Bluetooth 4.0+HS & FM Receiver [Broadcom, Feb 15, 2012]

    The Broadcom BCM4334 single-chip dual-band combo chip provides a complete wireless connectivity system with ultra-low power consumption for mass market smartphone devices. Using advanced design techniques and 40nm process technology to reduce active and idle power, the BCM4334 is designed to address the needs of highly mobile devices that require minimal power consumption and compact size while delivering dual-band Wi-Fi connectivity.

    The chip includes IEEE 802.11 a/b/g/n single-stream MAC/baseband/radio, Bluetooth 4.0 + HS, and an integrated FM radio receiver. It is designed to be used with external 2.4 GHz and 5 GHz front-end modules, which include power amplifiers, T/R switches and optional low noise amplifiers. The combo device also features advanced switching techniques that enable concurrent dual-band operation to simultaneously support network connectivity with one band while also allowing content streaming via technologies such as Wi-Fi Display and Wi-Fi Direct.

    The advanced architecture supports the latest “always on always connected” (AOAC) applications such as push e-mail or Internet radio services, even while the host smartphone is in sleep modes, further preserving battery life. The BCM4334 also includes a power management unit, which simplifies the system power topology and allows for operation directly from a mobile platform battery while maximizing battery life.

    Features

    • Dual-band 2.4 GHz and 5 GHz IEEE 802.11 a/b/g/n Wi-Fi connectivity
    • Single-stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to 150 Mbps for typical upper-layer throughput in excess of 90 Mbps
    • Supports the IEEE 802.11n STBC (space-time block coding) and LDPC (low-density parity check) options for improved range and power efficiency
    • Complies with Bluetooth Core Specification Version 4.0 + HS with provisions for supporting future specifications
    • Bluetooth Class 1 transmitter operation

    Broadcom shows a demonstration of Bluetooth 4.0 technology. [Broadcom YouTube channel, Jan 14, 2011]

    What is Bluetooth 4.0? It’s the latest spec from the Bluetooth SIG using Bluetooth but in a low-energy fashion. With Bluetooth 4.0 you can use watch batteries in devices and those devices would last up to 2 years. In the example Ron demonstrates, we see someone taking a blood pressure reading and from that blood pressure monitor that data is transmitted to a PC and on to the Doctor or healthcare provider, which saves time and money.

    Other use cases for Bluetooth 4.0 include health and fitness. In the fitness market you could use Bluetooth 4.0 in a heart rate monitor or a pedometer, devices that would use watch batteries, and that data could be simply uploaded to your PC or to your phone.

    At Broadcom we are constantly developing wireless, and other, technologies to make your life easier.

    New Combo Chips from Broadcom Accelerate Transition to Dual-Band Wi-Fi for Mainstream Smartphones and Tablets [press release, Feb 15, 2012]

    802.11n Dual-Band Wireless Connectivity Meets the Needs of Mainstream Devices as Performance Products Move to 5G WiFi

    News Highlights:

    • 2×2 MIMO Wi-Fi technology provides whole-home, high bandwidth connections ideal for video intensive tablet applications
    • 40nm CMOS manufacturing process and lower power architecture deliver longer smartphone battery life
    • Integration of Bluetooth 4.0 and FM radio round out the most advanced wireless connectivity solutions for mainstream tablets and smartphones

    Broadcom Corporation (NASDAQ: BRCM), a global innovation leader in semiconductor solutions for wired and wireless communications, today announced two new dual-band combo chips optimized to provide whole-home, high speed Wi-Fi for tablet computers and the benefits of concurrent dual-band connectivity for smart phones.

    Both of these new chips are manufactured in a 40nm process and employ the most advanced power management techniques, thereby significantly increasing battery life in products that use them. While the high end of the market is expected to adopt 5G WiFi, these chips move the bar for mid- and low-tier devices, bringing a cost effective dual-band implementation to smartphones and an equally cost effective dual stream solution to tablets.

    Smartphones and tablets continue to grow in popularity among mainstream consumers and are increasingly being used for sharing content, multiplayer gaming and watching high definition video. Features such as Wi-Fi Direct and Wi-Fi Display often use the 5GHz frequency band, making dual-band operation essential in portable products.  In addition, operating systems like Android and Windows are enabling more sophisticated applications on these devices, making high-speed dual-band wireless connectivity a must.

    The new Broadcom® InConcert BCM43241 and BCM4334 combo chips feature advanced dual-band Wi-Fi technology that utilize both 2.4GHz and 5GHz radio channels. The BCM43241, targeted at tablets, also features dual-stream technology, utilizing two streams per channel to enable twice the throughput and better range than the current generation of products that incorporate single-stream Wi-Fi.  While dual-band Wi-Fi dramatically improves the video experience in the mainstream tier, performance smartphones and tablets are expected to further enhance these applications by adopting 5G WiFi for gigabit wireless speeds.

    Both chips are currently sampling to early access partners, with full production expected in the third quarter of 2012.

    Key Facts:

    • BCM43241 improves throughput and range for mainstream tablets:
      • 802.11n 2×2 MIMO technology utilizes dual transmitters and receivers to boost data rates and enable 70% greater range at high-speed than single stream Wi-Fi.
      • Optimization for the tablet form factor allows strategic placement of antennas to increase coverage and signal consistency.
      • Integrated RF power amplifiers (PAs) accommodating both the 2.4 GHz and 5 GHz frequency bands eliminate the need for external PAs, reducing bill of materials (BOM) cost.
      • Chip is industry’s first to combine MIMO Wi-Fi with Bluetooth 4.0 and FM radio on a single piece of silicon, enabling lower power and easy integration into new tablet designs.
    • BCM4334 slashes power consumption:
      • Integrated processor enables off-load of audio processing to allow stereo playback while smartphone sleeps, reducing system power consumption.
      • Industry’s first concurrent dual-band single-stream solution supports ultra-fast switching between 5GHz and 2.4GHz bands to deliver more bandwidth to multiple wireless applications.
      • Optimized architecture slashes Bluetooth and FM power needs.
    • Industry’s most complete connectivity solutions:
      • Chips include FM radio, Bluetooth 4.0 and Bluetooth Smart (Bluetooth Low Energy) support for ultra low power connectivity with health, fitness and other sensors.
      • Broadcom InConcert® technology allows the multiple radio technologies on the chips to coexist without interfering with one another for an overall more satisfying user experience.
      • 40nm CMOS manufacturing process and optimized low power architecture reduces power consumption compared to competing solutions for longer battery life.
      • Full software support available for both Android and Windows, with support for Wi-Fi Direct and Wi-Fi Display, and the richest portfolio of Bluetooth profiles available.

    Quotes:

    Michael Hurlston, Senior Vice President and General Manager, Wireless Local Area Networks

    Broadcom Corporation

    “Connectivity defines the smartphone and tablet experience. The key features and applications that are driving popularity of these devices rely upon consistent, high-speed Wi-Fi and fast wireless synchronization speeds with low power consumption. Our new chips meet these needs with combo solutions, which OEMs prefer, and will accelerate the adoption of dual-band Wi-Fi in mainstream mobile devices. With 5G WiFi gigabit wireless targeted at performance smartphones and tablets, dual-band Wi-Fi is now emerging as a ‘must-have’ for a satisfying mobile experience.”

    Resources:

    Broadcom Wireless LAN Products
    http://www.broadcom.com/products/Wireless-LAN/802.11-Wireless-LAN-Solutions

    Subscribe to Broadcom RSS Feed:
    http://go.broadcom.com/sv2

    About Broadcom

    Broadcom Corporation (NASDAQ: BRCM), a FORTUNE 500® company, is a global leader and innovator in semiconductor solutions for wired and wireless communications. Broadcom® products seamlessly deliver voice, video, data and multimedia connectivity in the home, office and mobile environments.  With the industry’s broadest portfolio of state-of-the-art system-on-a-chip and embedded software solutions, Broadcom is changing the world by Connecting everything®. For more information, go to www.broadcom.com.


    V. LEADING WEARABLE COMPONENT SUPPLIES: MCU SOCS AND SENSOR SOCS

    From: IoT Era excites Semiconductor Players [Electronics Maker, May 6, 2014] I will highlight here the supplies from leading microcontroller (MCU) SoC and sensor SoC vendors as these type of components are driving the emergence of innovative wearable gadgets


    Linear Technology

    Microchip Technology

    STMicroelectronics

    [in addition to the text available with the article we should emphasize first STMicroelectronics’ undisputed leadership in the MCU SoC space:]

    STM32 32-bit ARM Cortex MCUs

    The STM32 family of 32‑bit Flash microcontrollers based on the ARM Cortex™‑M processor is designed to offer new degrees of freedom to MCU users. It offers a 32‑bit product range that combines high performance, real-time capabilities, digital signal processing, and low‑power, low‑voltage operation, while maintaining full integration and ease of development.

    The unparalleled and large range of STM32 devices, based on an industry-standard core and accompanied by a vast choice of tools and software, makes this family of products the ideal choice, both for small projects and for entire platform decisions.

    image

    from the already referenced in section I. 15 Years of Smartwatch Evolution [Teardown.com, April 25, 2014]:

    This blog discloses some of the key technology design wins and technologies we have documented in our wearable teardowns of four leading smartwatches, these include the Basis Science (now part of Intel) Carbon Steel Ed. B1, Pebble’s PebbleWatch, Qualcomm’s Toq, and the Samsung Galaxy Gear. It is interesting to note all four smartwatches use the STMicroelectronics ARM 32-Bit Cortex Microcontroller and have standardized on a Lithium Polymer battery module.

    Figure 1 compares the four devices with the STMicrodevices M3 or M4 MCU, Frequency, Built in Flash, Built in SRAM, Package Pin count, cost of IC, Model MCU and Package size.

    Figure 1: STMicroelectronics ARM 32-Bit Cortex MCU M3 or M4

    image

    [there is also a recent press release worth to include here as it is showing STMicroelectronics’ broad and advanced portfolio for wearables:]
    STMicroelectronics Builds Wearable Technology Portfolio to Cement Market Leadership
    [press release, March 11, 2014]

    Wave of analog and mixed-signal devices completes full collection for wearable applications
    STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, has announced a raft of analog and mixed-signal devices targeting the rapidly growing market for wearable technology.  These devices include current sensors, audio amplifiers, op amps, analog switches, and battery gas gauges enabling ST to offer the industry’s most complete set of building blocks for creating innovative wearable applications.
    Wearable applications are making a growing impact in markets that range from new healthcare technologies including remote heart-rate monitoring to consumer applications such as smart fashion accessories.  These applications represent a range of current and future markets that market analysts Strategy Analytics projects to grow by more than 70% through 2017.
    “In conjunction with our industry-leading range of motion and environmental sensors1 and our successes**** in a broad range of already-available wearable applications, our new2 ultra-low power microcontrollers [STM32L0 ], and our award-winning3 BlueNRG Bluetooth® Smart wireless connectivity solution, the analog and mixed-signal devices complete a comprehensive platform that makes ST the clear one-stop supplier of choice for customers developing innovative wearable applications,” said Andrea Onetti, General Manager Analog and Audio Systems Division, STMicroelectronics.
    Examples of devices suitable for wearable applications include ST’s single, dual, and quad op amps, such as the OA4NP33 quad  low-power op amp, that offer an ultra-low-power typical consumption of just 580nA per channel (at 1.8V power supply), making them ideally suited for functions such as sensor signal-conditioning in battery-operated wearable devices. Another product, the GG25L gas gauge, uses a patented OptimGauge™ algorithm to monitor battery voltage to an accuracy of 0.25%.
    Examples from ST’s rich portfolio of motion sensors include the LIS2DH12 ultra-low-power digital 3-axis accelerometer and the award-winning4 LSM303C ultra-compact high-performance e-compass module. ST’s M24SR dynamic tags add NFC connectivity to wearable applications for convenient wireless pairing, automatic connection to websites, or warranty-card activation.
    All of the devices are available in volume from March 2014.
    Click here for the high-resolution photo

    **** Select previously issued press releases highlighting ST’s wearables successes:

    1 Source: IHS Consumer and Mobile MEMS Market Tracker H1 2013
    2 STMicroelectronics Launches New STM32 Ultra-Low-Power Microcontrollers for Consumer, Health, and Industrial Applications [press release, Feb 11, 2014] –> STM32L0 ultra-low-power microcontrollers
    3 STMicroelectronics Receives Two 2014 CES Innovations Awards [press release, Nov 13, 2013] –> STM32F429/439 microcontroller (MCU) product line, STLUX385A controller IC for lighting and power management

    4 LSM303C earned the Device of the Year recognition from MEMS Industry Group

    [Finally I should add here a detailed presentation for STMicroelectronics’ latest MCU SoC as it is showing the reasons for its technology leadership quite well:]
    Product overview – STM32 L0 series ultra-low-power ARM Cortex-M0+ (epresentation) [STonlineMedia YouTube channel, May 13, 2014]

    Find out more information: http://www.st.com/stm32l0 Meet with STM32 ultra-low-power MCU ARM Cortex®-M0+ based. Discover how STMicroelectronics solution to reduce power consumption with 32-bit core

    [The IoT Era excites Semiconductor Players article is actually not mentioning at all the MCU SoC offerings of the company as it mainly focuses on its sensor SoC portfolio:]

    Smart Sensors

    Sensors are widely used in a typical IOT system. They are also driving the emergence of innovative wearable gadgets. Some of the most popular sensors are mentioned below

    a)      Accelerometer

    Also called a g-sensor, accelerometer can be used to detect linear acceleration, vibration, tilt, free fall detection etc. Accelerometer is used to implement features such as horizontal levelling, antitheft, vibration alert, pedometer, remote monitoring of adults and kids etc.

    b)      Gyroscope

    Gyroscope measures angular velocity and used to implement features such as gaming, 3D mouse, athlete training etc.

    c)      Magnetic Compass

    Magnetic Compass can detect earth’s magnetic field and can give direction sense to devices. It is widely used in indoor navigation and map navigation in mobile phone.

    Ultra-compact high-performance e-compass : 3D accelerometer and 3D magnetometer module

    d)      Pressure Sensor

    Pressure sensor can detect earth’s atmospheric pressure. This feature can be used to implement barometer and altimeter. LPS25H pressure sensor from STMicroelectronics is so accurate that it can even be used to tell the floor of building accurately. This feature can be used to implement indoor navigation, augmented reality and 3D GPS.

    MEMS pressure sensor: 2.5 X 2.5 mm High Accuracy barometer

    e)      Temperature and Humidity Sensor

    Temperature and humidity sensor can detect temperature and humidity parameter which can be used to control the performance of devices as well as wearable gadgets.

    f)       MEMS Microphone

    MEMS Microphone is audio sensor that converts sound signals into electrical signals. MEMS Microphones are increasingly preferred over conventional microphones as they offer higher SNR, small form factor, digital interface, better RF immunity and high robustness against vibration.

    Texas Instruments
    [as TI’s approach is deeply technical aimed at the broadest “IoT-ready” portfolio I will include here—in addition to the text available with the article (which you can read following its link)—only a recent video demonstrating that:]
    Innovations in IoT [Texas Instruments YouTube channel, Dec 16, 2013]

    In this whiteboard video, learn how semiconductor innovation is advancing the Internet of Things to include thousands of applications and an anticipated 50 billion connected devices by 2020.

    Freescale Semiconductor
    [in addition to the text available with the article there is a very recent company video:]Wearables Powered by Freescale Technology: Garmin, Withings and Whistle [freescale YouTube channel, April 25, 2014]

    http://www.freescale.com/wearables, http://www.warpboard.org — Freescale’s Steve Nelson and Sujata Neidig talk about the growing wearables market and look at some examples of wearables that are powered by Freescale technology including a Garmin GPS watch, Withings’ Pulse activity tracker and the Whistle activity monitor for dogs. They explore how to build wearables using the WaRP reference platform, which enables developers of wearable devices to get to market faster.

     

    InvenSense, Inc.

    [I will first add a video which shows the origins of the company:] Invensense Moving Beyond Wii to Smart Phones [TheStreet YouTube channel, Nov 21, 2011]

    image
    [Then I will add a video demonstrating some rather interesting next-gen capabilities:]
    Motion Interface is the Next Transformational Technology [InvenSense Inc. YouTube channel, June 26, 2012]

    Advances in MotionTracking technology has created all new Motion Interface functionalities that can enable many new user interfaces such as, performing one-to-one motion control, recognizing motion gesture commands, controlling content and function by pointing the device in any direction and or controlling menus on a smartTV by simple point and click, and finally assisting to track your location indoors.

    [Only after that comes the Invensense related text from IoT Era excites Semiconductor Players article]

    InvenSense Inc. is the world’s leading provider of MotionTracking(TM) sensor system on chip (SoC) and Soundsolutions for consumer electronic devices. The company’s patented InvenSense Fabrication Platform and patent-pending MotionFusion(TM) technology address the emerging needs of many mass-market consumer applications via improved performance, accuracy, and intuitive motion-, gesture- and sound-based interfaces. InvenSense technology can be found in consumer electronic products including smartphones, tablets, gaming devices, optical image stabilization, and remote controls for Smart TVs. The company’s MotionTracking products are also being integrated into a number of industrial applications.

    IoT Products:

    Motion Overview

    Motion Tracking devices from InvenSense are rapidly becoming a key function in many consumer electronic devices including smartphones, tablets, gaming consoles, and smart TVs as it provides an intuitive way for consumers to interact with their electronic devices by tracking motion in free space and delivering these motions as input commands. Accurately tracking complex user motions requires the use of motion sensors such as gyroscopes, accelerometers, compasses, and pressure sensors, fusing the sensor outputs into a single and accurate data stream for use as input commands in consumer electronics devices, and ongoing run-time calibration to ensure an optimal user experience.

    Sound Overview

    InvenSense’s microphone portfolio builds on a strong heritage of industry firsts, including continuous improvement of MEMS microphone SNR, ever-higher integration levels, and even lower power consumption. Technological advances like these have enabled machine speech recognition & active noise cancellation to become commonplace in consumer devices and other applications.

    Humans intuitively understand audio capture to be a critical factor in awareness of their surroundings. InvenSense is working to enable the same level of awareness for smart devices with leading-edge MEMS microphones. InvenSense combines the capability to sense audio along with cutting-edge motion detection, which is important for many contextual awareness applications.

    Key Markets

    Smartphones:

    While many smartphones use basic motion sensing capabilities to provide tilt sensing, screen rotation and basic video gaming functionality, the latest generation of smartphones are increasingly incorporating complete Motion Tracking and Sound technology that can deliver enhanced user experiences in the areas of web, media and menu navigation. In addition, MotionTracking can provide a range of other capabilities, such as more responsive motion-based video gaming, enhanced still and video image stabilization, improved pedestrian navigation, secure authentication through gestures, as well as gesture and character shortcuts that accelerate common tasks on the device.

    Tablet devices:

    Similar to smartphones, early generations of tablet devices use basic motion sensing capabilities to provide tilt-sensing and screen rotation, but it is expected that newer generations of these devices will incorporate complete Motion Tracking and Sound technology to provide a wide range of motion-based capabilities.

    Wearable devices:

    Wearable sensors in health and fitness are a fast growing market, and an emerging opportunity for Motion Interface integration. Motion Tracking™ devices can accurately detect a range of human body motions to enable activity monitoring in fitness devices. Various innovative devices are quickly entering the market, providing a new level of personal health and fitness monitoring. With the advancement of Motion Interface technology, wearable sensors in health monitoring and sport and fitness will allow for precise tracking and monitoring of body motion as well as other sophisticated applications, providing users with new levels of valuable information.

    Digital still & video cameras:

    Currently, many digital still, camera phone modules, and video cameras are equipped with basic motion sensors that perform image stabilization to reduce blur caused by hand jitter. In addition to enhanced image stabilization, the inclusion of Sound technology enables digital still and video camera manufacturers to differentiate their products to address performance, size, robustness and cost considerations.

    Digital television and set-top box remote controls:

    Digital televisions (DTVs), set-top boxes and Blu-Ray devices are becoming increasingly more interactive through the addition of motion and Sound interfaces as well as interactive menus and applications, internet browsing, video-on-demand services and viewing of personal media content.

    Video gaming:

    Motion Tracking and Sound technology in console and portable video gaming devices provides an immersive video gaming experience by accurately tracking body and hand movements, and is significantly more intuitive than traditional button and joystick based interfaces.

    AlwaysOn’ MotionTracking sensor system

    InvenSense is in the business of creating human-like interface for consumer electronic devices to improve the consumer experience.  Part of that human-like interface is MotionTracking and it is now complemented by Sound. To support this strategy, we have introduced our ‘AlwaysOn’ MotionTracking sensor system on chip platforms at Consumer Electronic Show and Mobile World Congress this year. The ICM-20628 is targeted at the Smartphone and Tablet markets, and at approximately 2mW it is the world’s lowest power 6-axis (accelerometer + gyroscope) solution. To achieve the lowest system power and the best performance the ICM-20628 is enabled with on-chip self-calibration for continuous high performance over lifetime.

    In addition to the motion sensors, InvenSense has a broad portfolio of high performance MEMS microphones which are optimized for: far-field applications, loud audio recording, ‘AlwaysOn’ contextual awareness, key word spotting, and directionality.

    InvenSense: MEMS Sensors have Evolved [InvenSense Inc. YouTube channel, Feb 4, 2013]

    Are Investors Ignoring InvenSense’s Potential? [The Motley Fool, May 7, 2014]

    For investors, Wall Street’s short-sighted nature can be a blessing in disguise. Motion chip specialist InvenSense (NYSE: INVN ) was beaten down last week after the company missed earnings estimates for the fourth quarter as it decided to ramp up research and development initiatives. InvenSense reported earnings of just $0.07 per share, while analysts were expecting $0.10.

    InvenSense is going all out to tap opportunities across several end-markets such as mobile and wearable devices. As such, the company increased R&D spending to bolster product development. However, analysts were not impressed, as they saw short-term gains instead of long-term prospects. Since InvenSense could be a key beneficiary of Google‘s (NASDAQ:GOOG ) Project Ara, and it could land a spot in Apple‘s (NASDAQ: AAPL ) iDevices, the recent drop has opened a window of opportunity for investors to buy more shares.

    Ruling the Android universe
    InvenSense is known for its motion-tracking sensors and has managed to create a solid position for itself in the Android universe. Samsung‘s (NASDAQOTH: SSNLF ) Galaxy Note 3 and Galaxy S5, Google’s Nexus 5, and Amazon’s Kindle Fire all contain InvenSense chips.

    Analysts at Baird are of the opinion that InvenSense is selling a larger number of gyroscopes to Samsung for the latest flagship than originally expected. Coupled with the fact that the Galaxy S5 is selling at a faster pace than its predecessor, there’s is a good chance that InvenSense could see more orders from the South Korean giant going forward. Also, Samsung expects to sell approximately 126 million high-end phones this year. Since InvenSense’s products are inside Samsung’s high-end phones, the company’s growth should pick up going forward.

    Project Ara – A big catalyst
    The big news is Google’s Project Ara. Google is working to create modular smartphones that will be designed exclusively according to customers’ needs. This is a very ambitious project, as described on the Project Ara website:

    The smartphone is one of the most empowering and intimate objects in our lives. Yet most of us have little say in how the device is made, what it does, and how it looks. And 5 billion of us don’t have one. What if you could make thoughtful choices about exactly what your phone does, and use it as a creative canvas to tell your own story? Introducing Project Ara. Designed exclusively for 6 billion people.

    Reports suggest that the Project Ara smartphones will cost just $50, and the technology giant will deploy kiosks for feature additions after the device is purchased. The modular smartphone will be 3D-printed, allowing for a high level of customization by users. Moreover, considering that low-cost phones are in great demand in emerging markets, this ambitious move by Google can improve growth in smartphones going forward.

    InvenSense is deeply embedded in flagship Android devices. It has also partnered with Google on the Nexus platform, so it’s likely that it could become a key partner in Project Ara.

    Apple might be another reason to invest
    There’s been a lot of buzz on the Street that InvenSense is going to be a potential winner in the next iPhone. As reported by The Motley Fool’s Adam Levy in March, it won’t be a surprise if Apple switches suppliers and taps InvenSense for the accelerometer and the gyroscope. Levy goes on to state that Apple could place 90 million iPhone orders this year. Considering this huge number, Cupertino could diversify its suppliers in order to avoid supply constraints.

    On the other hand, there’s the rumor of InvenSense supplying chips for an Apple smart watch. According to R. W. Baird, Apple could launch a smart watch in the second half of this year and ship between 5 million-6 million units. Since InvenSense is well-positioned in this market, it might land a spot in this device. In fact, InvenSense is already supplying chips for Samsung’s wearables, such as the Gear 2 and the Gear Fit

    Earlier this year, at the Mobile World Congress, InvenSense announced a seven-axis MEMS motion tracking platform. The ICM-20728, as the chip is known, has a three-axis gyroscope, three-axis accelerometer, and a pressure sensor on a single chip, along with a digital motion processor. This chip allows motion tracking with absolute and relative altitude changes for navigation, health, and fitness applications, as reported by SlashGear. According to InvenSense, this chip is the first of its kind, wherein all information is available on a single platform. 

    This chip is intended for wearable devices such as smart watches and fitness bands. Additional features such as its self-calibrating nature and altimeter to enable indoor and outdoor 3-D navigation further strengthen InvenSense’s chances of adding Apple to its client list. 

    Final words
    InvenSense has two big opportunitiesGoogle’s Project Ara and Apple’s next round of devices. The company did the right thing by investing in product development. Driven by a strong product portfolio and big clients, InvenSense can hit new highs going forward, so the stock’s recent drop is an opportunity you shouldn’t miss.

    The Apple supplier that could make you a fortune
    There are really only two ways to profit from a game-changing tech product that Apple CEO Tim Cook accidentally revealed recently. The first way is to invest in Apple directly. The second and better way is to invest in Apple’s inside supplier. To learn more about this incredible opportunity, just watch this shocking video that reveals the best way to invest in Apple’s secret partner. Click here to learn more about this stock.

    InvenSense at Mobile World Congress 2014 [InvenSense Inc. YouTube channel, April 24, 2014]

    Showcased at MWC 2014, InvenSense is the leading provider of MotionTracking™ sensor system on chip (SoC) and Sound solutions for consumer electronic devices such as smartphones, tablets, wearables, gaming devices, optical image stabilization, and remote controls for Smart TVs.

    InvenSense™ Introduces World’s First Integrated 7-Axis MEMS MotionTracking™ Platform [press release, Feb 24, 2014]

    Small 3.5mm x 3.5mm x 0.9mm Package

    BARCELONA, Spain, February 24, 2014 – InvenSense, Inc. (NYSE: INVN), the leading provider of MotionTracking™ system on chip (SoC) and Sound devices, introduces the ICM-20728, the world’s first integrated 7-axis (3-axis gyroscope + 3-axis accelerometer + pressure sensor) single chip platform solution with onboard Digital Motion Processor (DMP™). For the first time, a single SoC delivers MotionTracking with absolute and relative altitude change for navigation, health and fitness applications. The new InvenSense 7-axis platform targets mobile and wearable devices such as smartphones, tablets, fitness bands, and smart watches.

    The new ICM-20728 SoC underscores InvenSense’s ‘AlwaysOn’ vision by consuming approximately 2mW of power with full 7-axis and DMP active. This fully autonomous 7-axis motion tracking solution combines our industry leading gyroscope and accelerometer with a fully integrated pressure sensor, InvenSense’s third generation DMP, algorithms, and delivers new features, such as:

    • Self calibration for continuous high performance over extended lifetime
    • Activity classification and analysis for fitness and context aware applications
    • Altimeter function for indoor/outdoor 3D navigation

    The ICM-20728 is software compatible with the previously announced ICM-20628. Furthermore, the InvenSense platform includes a programming environment for custom motion feature development with InvenSense Gesture Language (IGL) tools and the MotionApps software is fully compliant with, and drop-in ready, for multiple operating systems, including Google’s latest Android KitKat release.

    “InvenSense’s integrated 7-axis platform with embedded processing is another technological breakthrough for the MEMS industry,” said Ali Foughi, Vice President of Marketing and Business Development at InvenSense. “With this device, InvenSense enables a new class of ‘AlwaysOn’ applications and services, such as indoor navigation, activity tracking and fitness.”

    Sampling of the InvenSense ICM-20728 will commence within the first half of 2014. InvenSense is exhibiting in booth # D61 in Hall 7 at the 2014 Mobile World Congress taking place in Barcelona, Spain from February 24 – 27, 2014. To schedule press and partner meetings at the show, contact pr@invensense.com.

    About InvenSense

    InvenSense Inc. (NYSE: INVN) is the leading provider of MotionTracking™ sensor system on chip (SoC) and Sound solutions for consumer electronic devices. The company’s patented InvenSense Fabrication Platform and patent-pending MotionFusion™ technology address the emerging needs of many mass-market consumer applications via improved performance, accuracy, and intuitive motion-, gesture- and sound-based interfaces. InvenSense technology can be found in consumer electronic products including smartphones, tablets, wearables, gaming devices, optical image stabilization, and remote controls for Smart TVs. The company’s MotionTracking products are also being integrated into a number of industrial applications. InvenSense is headquartered in San Jose, California and has offices in China, Taiwan, Korea, Japan, Slovakia, and Wilmington, MA. More information can be found at http://www.invensense.com.

    InvenSense® Technology [InvenSense, May 11, 2012]

    Overview

    Our technology includes five core elements: our patented InvenSense-Fabrication process, our advanced MEMS motion sensor designs, our mixed-signal circuitry for sensor signal processing, our MotionFusion™ and calibration firmware, and our MotionApps™ software consisting of drivers and APIs for applications development on all major consumer electronics operating systems. Our patented InvenSense-Fabrication process enables direct integration of MEMS mechanical structures with standard complementary metal oxide semiconductor (CMOS) at the wafer level. This results in significant performance, reliability, integration and cost benefits, and enabled InvenSense to pioneer the industry’s first high-volume, commercial MEMS fabless business model. Our mixed-signal circuitry provides sensor signal processing which enables MotionFusion™ technology critical to our MotionProcessing™ platform. Our technology allows us to deliver Motion Interface solutions for all major consumer electronics applications including smartphones, tablets, game controllers, smart TVs, and wearable sensors, and with increasing levels of integration, from single-axis analog gyroscopes to fully-integrated, intelligent six and nine-axis MotionTracking™ devices.

    image

    Highly integrated and cost effective solutions enabled by our patented InvenSense-Fabrication Process

    The foundation of our MotionTracking™ devices is the patented InvenSense-Fabrication process, which combines MEMS on CMOS (also known as CMOS-MEMS) in a small, cost effective standard package. Combining a MEMS wafer with an industry standard CMOS wafer allows us to reduce the number of MEMS manufacturing steps, perform wafer-level testing, and use chip-scale packaging, thereby reducing back-end costs of packaging and testing and improving overall yield and quality. In addition to our CMOS-MEMS process, we have also developed low cost, high throughput proprietary test and calibration systems for our motion sensors, capable of proving fully functional 9 DOF testing, which further reduces the back-end costs. We have pioneered a technological breakthrough in manufacturing low-cost MEMS motion interface solutions. Combining this unique process capability with our MEMS-based motion sensor designs and methodologies, mixed-signal IC integration techniques, MotionApps™ and Embedded MotionApps firmware, we have introduced MotionTracking™ devices that are industry-leading in form factor, performance, cost and reliability.

    Manufacturing efficiency, flexibility and scalability

    imageThe foundation of our MotionTracking™ devices is the patented InvenSense-Fabrication process, which combines MEMS on CMOS (also known as CMOS-MEMS) in a small, cost effective standard package. Combining a MEMS wafer with an industry standard CMOS wafer allows us to reduce the number of MEMS manufacturing steps, perform wafer-level testing, and use chip-scale packaging, thereby reducing back-end costs of packaging and testing and improving overall yield and quality. In addition to our CMOS-MEMS process, we have also developed low cost, high throughput proprietary test and calibration systems for our motion sensors, capable of proving fully functional 9 DOF testing, which further reduces the back-end costs. We have pioneered a technological breakthrough in manufacturing low-cost MEMS motion interface solutions. Combining this unique process capability with our MEMS-based motion sensor designs and methodologies, mixed-signal IC integration techniques, MotionApps™ and Embedded MotionApps firmware, we have introduced MotionTracking™ devices that are industry-leading in form factor, performance, cost and reliability.

    Manufacturing efficiency, flexibility and scalability

    Most MEMS devices are manufactured in proprietary fabrication facilities utilizing numerous proprietary and non-standard MEMS processing steps that are not compatible with CMOS manufacturing fabrication lines. InvenSense-Fabrication utilizes all off-the-shelf equipment and processing steps that are compatible with CMOS fabrication that has allowed us to port our proprietary process in leading CMOS foundries and operate as a fabless MEMS company. Our fabless model enables cost-effective high volume production and provides us with flexibility to quickly react to our customers’ needs.

    Scalable MotionProcessing™ platform with opportunities for multi-sensor integration

    imageOur current generation of MotionTracking™ devices are the six-axis MPU-[6000/]6050 [Nov 10, 2010 see below] and the nine-axis MPU-9150 [Jan 11, 2012]. The MPU-9150 [see on the right] packages the InvenSense single chip 6-axis gyroscope and accelerometer with onboard Digital Motion Processor™ (DMP) hardware acceleration along with a 3-axis E-Compass die to deliver the world’s first integrated 9-axis MotionTracking™ device. Our 9-axis MotionFusion™ firmware combines calibrated accelerometer, gyroscope, and compass sensor output into a single data stream for software developers to easily incorporate Motion Interface functionality in their applications.

    imageAs a result of integrating multiple sensors onto the same die and package, and providing complete 9-axis MotionFusion™ with run-time calibration software, our MotionTracking™ devices do not require the traditional calibration steps required with discrete sensor solutions by our customers. Furthermore, offloading intensive motion tracking computations from the host processor to our chip has provided entirely new capabilities and performance for consumer devices, applications and services.

    High performance and reliability

    Consumer electronics devices are exposed to harsh environmental conditions and must meet increasing performance and reliability requirements. One of the primary requirements for MEMS sensors in consumer applications is the ability to detect and measure all types of motion at varying rates of rotation in a wide range of environmental conditions. Gyroscopes, in particular, are responsible for the measurement of rotational motion; hence their functionality over the life of the product is critical. InvenSense-Fabrication combines the MEMS with CMOS at the wafer level, providing highly reliable hermetically sealed cavities for the MEMS structures without the need for a costly and additive getter process, whereby reactive materials are deposited in the cavity to maintain the vacuum integrity of the sensor. Our metallic eutectic seal provides for an inherently more reliable hermetic seal that will allow for reliable operation under harsh environmental conditions over the product lifecycles. The use of thick bulk silicon has enabled us to deliver high resonance frequency structures in the 30 kHz range, exceeding any potential ambient noises due to sounds and or vibrations, enabling for consistent high performance and accuracy under all condition.